


Natural Computing Series
Series Editors:  G. Rozenberg
Th. Bäck  A.E. Eiben  J.N. Kok  H.P. Spaink

Leiden Center for Natural Computing

Advisory Board:  S. Amari   G. Brassard   K.A. De Jong
C.C.A.M. Gielen   T. Head   L. Kari   L. Landweber   T. Martinetz
Z. Michalewicz   M.C. Mozer   E. Oja   G. Paun   J. Reif   H. Rubin
A. Salomaa   M. Schoenauer   H.-P. Schwefel   C. Torras
D. Whitley   E. Winfree   J.M. Zurada

°

C C
N



Gabriel Ciobanu · Gheorghe Paun · Mario J. Pérez-Jiménez (Eds.)

123

Applications of
Membrane Computing

With 99 Figures and 24 Tables

°



Library of Congress Control Number: 2005929610

ACM Computing Classification (1998):  D.1, F.1, F.4, I.1, I.6, J. 3–4.

ISBN-10   3-540-25017-4 Springer Berlin Heidelberg New York
ISBN-13   978-3-540-25017-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under the German
Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Werbeagentur, Heidelberg
Typesetting: by the Editors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 45/3142/YL  –  5 4 3 2 1 0

Editors
Gabriel Ciobanu

Institute of Computer Science of the
Romanian Academy
Blvd. Copou 8
 700506 Iasi, Romania
gabriel@iit.tuiasi.ro

Gheorghe Paun

Research Group on Natural Computing
Department of Computer Science and
Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n
41012 Seville, Spain
gpaun@us.es

Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and
Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n
41012 Seville, Spain
marper@us.es

Series Editors
G. Rozenberg (Managing Editor)

rozenber@liacs.nl
Th. Bäck, J.N. Kok, H.P. Spaink

Leiden Institute of Advanced
Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden, The Netherlands

A.E. Eiben

Vrije Universiteit Amsterdam
The Netherlands

°

,



Preface

Membrane computing is a branch of natural computing which investigates
computing models abstracted from the structure and functioning of living cells
and from their interactions in tissues or higher order biological structures.

Briefly, a membrane system is a distributed computing model process-
ing multisets of objects either in the compartments of a cell-like hierarchical
arrangement of membranes (hence a structure of compartments which cor-
responds to a rooted tree), or in a tissue-like structure consisting of “cells”
placed in the nodes of an arbitrary graph. Both the objects of the membranes,
the membranes, and the links among them evolve according to some rules. For
instance, the multisets of objects evolve mainly by means of rewriting rules,
which have the form of usual chemical equations (several objects “react” and
get transformed into some product objects). A crucial aspect of this process-
ing is the resulting communication of objects through membranes, between
regions of the same cell, between cells, or between cells and their environment.

A detailed introduction to membrane computing is provided in the first
chapter of the book. This research area was initiated recently, at the end
of 1998, with the aim of learning ideas, tools, techniques, and models from
the biology of the cell that could turn out to be useful (or at least in-
teresting) for the purpose of computing. The new field has flourished dur-
ing the last five years; details can be found in the monograph Membrane
Computing. An Introduction, published in 2002 in the same series as the
present volume, and at the membrane systems (also called P systems) Website
http://psystems.disco.unimib.it). Many classes of P systems, inspired by
either biological or mathematical considerations, were introduced, and their
power (in comparison with various classes of Turing machines) and efficiency
(the possibility to address/solve computationally hard problems) were exten-
sively investigated.

Moreover, especially in recent years, it has turned out that membrane com-
puting has significant potential to be applied to various problems of biology
as well as to linguistics, theoretical computer science (sorting and ranking, 2D
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languages) and applied computer science (computer graphics, cryptography,
approximate algorithms for optimization problems).

This book presents some applications of membrane computing, organized
in three main categories (biology, computer science, and linguistics), beginning
with the introductory chapter mentioned above, and ending with a chapter
about membrane computing software (useful in applications).

Before looking at these applications, let us discuss the attractiveness of
membrane computing as a modeling framework, with an implicit reference to
applications in biology.

First, there are several essential features genuinely relevant to membrane
computing that are of interest for many applications:

• distribution (with important issues related to system-part interaction and
emergent behavior nonlinearly resulting from the composition of local be-
haviors),

• discrete mathematics (continuous mathematics, especially systems of dif-
ferential equations, has a glorious history of applications in many dis-
ciplines, such as astronomy, physics, and meteorology, but has failed to
prove adequate for linguistics, and cannot cover more than local processes
in biology because of the complexity of the processes and, in many cases,
because of the imprecise character of the processes; a basic question is
whether the biological reality is of continuous or discrete nature, as lan-
guages proved to be, with the latter ruling out the usefulness of many tools
from continuous mathematics),

• algorithmicity (by definition, P systems are computability models of the
same type as Turing machines or other classic representations of algo-
rithms, and, as a consequence, they can be easily simulated on computers),

• scalability/extensibility (this is one of the main difficulties of using differ-
ential equations in biology),

• transparency (multiset rewriting rules are nothing other than reaction
equations as customarily used in chemistry and biochemistry, without any
“mysterious” notation or “mysterious” behavior),

• massive parallelism (a dream of computer science, a commonplace in biol-
ogy),

• nondeterminism (let us compare the “program” of a P system, i.e., a set
of rules localized in certain regions and without any imposed ordering,
with the rigid sequences of instructions of programs written in typical
programming languages),

• communication (with the astonishing and still not completely understood
way in which life is coordinating the multitude of processes taking place
in cells, tissues, organs, and organisms, in contrast with the costly way of
coordinating/synchronizing computations in parallel electronic computing
architectures, where the communication time becomes prohibitive with the
increase in the number of processors).
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The majority of papers on applications of membrane computing are con-
cerned with applications to biology. This is quite natural in view of the fact
that the theory of membrane systems as a model of computation originated in
biology as an abstraction of the structure and functioning of biological mem-
branes. This supports our optimism about the (potential) success of these
applications in modeling various aspects of biological reality, and should be
contrasted with various models “transferred by force” from one area of sci-
ence to another, where the original model was meant for totally different and
incompatible phenomena (and consequently the modeling effort was unsuc-
cessful).

Concerning applications reported till now, and hence applications reported
in this volume, they are carried out at different levels. In many cases, what
is actually used is the language of membrane computing, which involves (at
least) three different aspects: (i) the long list of newly formulated concepts, (ii)
the mathematical formalism of membrane computing, and (iii) the graphical
way to represent membranes, cell-like structures, tissue-like structures, and so
on.

Concerning graphical representation, we want to point out that not only
the standard features (such as the hierarchical or tissue-like arrangements of
membranes, the objects inhabiting the compartments, and the flow of infor-
mation through communication channels) but also the evolution rules of the
systems are part of the graphical representation. This makes visualization of
the “evolution engine” transparent.

Another level of application is to use tools, techniques, and results obtained
through research on membrane computing. These applications may aim at
either

– solving problems already formulated by biologists, albeit informally or
within a different model, or

– suggesting entirely new problems (problem areas) that become (more)
transparent and interesting through the insights provided by the model
of membrane computing.

Applications of all these types have been reported in the literature on
membrane computing, and several of them are presented in this book. As
already indicated, most applications concern biology. Moreover, applications
to a number of other domains are also presented here. In particular, included
are applications to computer graphics (where compartmentalization seems to
add a significant efficiency to well known techniques based on L systems; see
Chapter 9), linguistics (both as a representation language for various concepts
related to language evolution, dialogue, semantics, Chapter 13, and making
use of the parallelism for solving parsing problems in an efficient way, Chapter
14), management (again, mainly at the level of the formalism and the graph-
ical language; such applications are not presented in the book, but references
can be found on the Website mentioned above), sorting and ranking algo-
rithms (Chapter 8), approximate algorithms for solving optimization problems
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(Chapter 11), cryptography (attacking a well known public-key cryptographic
system; see Chapter 10), and NP-complete problems (the standard time-space
trade-off; see Chapter 12).

The applications to biology in most cases follow a standard scenario. One
examines a piece of reality, e.g., from the biochemistry of the cell, one writes a
P system modeling the respective processes, one writes a program simulating
this P system (or uses one of the existing programs for this purpose), and
one performs a large number of experiments with the program (this is much
cheaper than conducting laboratory experiments), tuning certain parameters
and observing the evolution of the system (usually, following the population of
certain objects). Illustrations of this strategy are given in Chapter 2 (modeling
mechanosensitive channels), Chapter 4 (respiration in bacteria), Chapter 5
(cell-mediated immunity), Chapter 6 (photosynthesis), and Chapter 3 (gene
expression regulation). Chapter 3 deserves special attention: it discusses a
part of a more general research plan to develop a theory of discrete dynamical
systems intimately related to both P systems and applications to biology.

Chapter 15 provides an overview of the available membrane computing
software. Actually, these computer programs are not real “implementations”
of P systems. This is due to the difficulties related to the nondeterminism
and the parallelism; however, there are attempts to implement P systems on
dedicated, reconfigurable hardware, as done by Petreska & Teuscher, or on a
cluster of computers, as done by Ciobanu & Guo, or in a distributed fashion,
as reported by Syropoulos et al. (references can be found in the bibliography
of Chapter 15). At this moment, there is no bio-implementation of P systems.

Actually, as illustrated by the contributions to this volume, a lot remains
to be done. It is the hope of the editors that this volume will contribute to
and motivate future research in membrane computing. It is also our belief
that membrane computing can offer a useful variety of tools, techniques, and
models for a wide spectrum of applications.

*

We are much indebted to all contributors to this volume, admiring their
patience and thanking them for their work during the many adjustments of the
chapters. Special thanks are due to Springer, in particular to Mrs. Ingeborg
Mayer and Mr. Ronan Nugent, for very pleasant and efficient cooperation.

January 2005 Gabriel Ciobanu
Gheorghe Păun

Mario J. Pérez-Jiménez
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Mario J. Pérez-Jiménez, Alvaro Romero-Jiménez,
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Chapter 1
Introduction to Membrane Computing

Gheorghe Păun

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania

george.paun@imar.ro

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence

University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

gpaun@us.es

Summary. This is a comprehensive (and friendly) introduction to membrane com-

puting (MC), meant to offer both computer scientists and non-computer scientists

an up-to-date overview of the field. That is why the set of notions introduced here

is rather large, but the presentation is informal, without proofs and with rigorous

definitions given only for the basic types of P systems – symbol object P systems

with multiset rewriting rules, systems with symport/antiport rules, systems with

string objects, tissue-like P systems, and neural-like P systems. Besides a list of

(biologically inspired or mathematically motivated) ingredients/features which can

be used in systems of these types, we also mention a series of results, as well as a

series of research trends and topics.

1 (The Impossibility of) A Definition of Membrane
Computing

Membrane computing (MC) is an area of computer science aiming to abstract
computing ideas and models from the structure and the functioning of living
cells, as well as from the way the cells are organized in tissues or higher order
structures.

In short, MC deals with distributed and parallel computing models, pro-
cessing multisets of symbol objects in a localized manner (evolution rules
and evolving objects are encapsulated into compartments delimited by mem-
branes), with an essential role played by the communication between compart-
ments (and with the environment). Of course, this is just a rough description
of a membrane system – hereafter called P system – of the very basic type,
as many different classes of such devices exist.
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The essential ingredient of a P system is its membrane structure, which can
be a hierarchical arrangement of membranes, as in a cell (hence described by
a tree), or a net of membranes (placed in the nodes of a graph), as in a tissue
or a neural net. The intuition behind the notion of a membrane is a three-
dimensional vesicle from biology, but the concept itself is generalized/idealized
to interpreting a membrane as a separator of two regions (of Euclidean space),
a finite “inside” and an infinite “outside,” providing the possibility of selective
communication between the two regions.

The variety of suggestions from biology and the range of possibilities to
define the architecture and the functioning of a membrane-based multiset
processing device are practically endless, and already the literature of MC
contains a very large number of models. Thus, MC is not merely a theory
related to a specific model, it is a framework for devising compartmentalized
models. Because the domain is rather young (the trigger paper is [64], circu-
lated first on the Web, though related ideas were considered before, in various
contexts), and as a genuine feature, based on both the biological background
and the mathematical formalism used, not only are there already many types
of proposed P systems, but also the flexibility and the versatility of P systems
seem, in principle, to be unlimited.

This last observation, as well as the rapid development and enlargement
of the research in this area, make impossible a short and faithful presentation
of membrane computing.

However, there are series of notions, notations, and models which are al-
ready “standard,” which have stabilized and can be considered as basic ele-
ments of MC. This chapter is devoted to presenting mainly such notions and
models, together with their notations.

The presentation will be both historically and didactically organized, in-
troducing mainly notions first investigated in this area, or simple notions able
to quickly offer an idea of membrane computing to the reader not familiar
with the domain.

The reader has surely noticed that the discussion refers mainly to computer
science (goals), and much less to biology. MC was not initiated as an area
aiming to provide models to biology, models of the cell in particular. At this
moment, after considerable development at the theoretical level, the domain is
not yet fully prepared to offer such models to biology, though this has been an
important direction of the recent research, and considerable advances toward
such achievements have been reported. The present volume is a proof of this
assertion.

2 Membrane Computing as Part of Natural Computing

Before entering into more specific elements of MC, let us spend some time
with the relationship of this area with, let us say, the “local” terminology, the
“outside.” We have said above that MC is part of computer science. However,
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the genus proximus is natural computing, the general attempt to learn ideas,
models, and paradigms useful to computer science from the way nature – life,
especially – “computes” in various circumstances where substance and in-
formation processing can be interpreted as computation. Classic bio-inspired
branches of natural computing are genetic algorithms (more generally, evo-
lutionary computing) and neural computing. Both have long histories, which
can be traced to the unpublished works of Turing, many applications, and a
huge bibliography. Both are proof that “it is worth learning from biology,”
supporting the optimistic observation that during many billions of years na-
ture/life has adjusted certain tools and processes which, correctly abstracted
and implemented in computer science terms, can prove to be surprisingly
useful in many applications.

A more recent branch of natural computing, with an enthusiastic beginning
and as yet unconfirmed computational applicability (we do not discuss here
the by-products, such as the nanotechnology related developments), is DNA
computing, whose birth is related to the Adleman experiment [1] of solving a
(small) instance of the Hamiltonian path problem by handling DNA molecules
in a laboratory. According to Hartmanis [39, 40], this was a demo that we
can compute with biomolecules, a big event for computability. However, after
one decade of research, the domain is still preparing its tools for a possible
future practical application and looking for a new breakthrough idea, similar
to Adleman’s one from 1994.

Both evolutionary computing and DNA computing are inspired from and
related to DNA molecules. Neural computing considers the neurons as simple
finite automata linked in specific types of networks. Thus, these “neurons” are
not interpreted as cells, with an internal structure and life, but as “dots on a
grid”, with a simple input-output function. (The same observation holds true
for cellular automata, where again the “cells” are “dots on a grid,” interacting
only among themselves, in a rigid structure.) None of these domains considers
the cell itself as its main object of research; in particular, none of these domains
pays any attention to membranes and compartmentalization – and this is the
point where membrane computing enters the stage. Thus, MC can be seen
as an extension of DNA (or, more generally, molecular) computing, from the
“one processor” level to a distributed computing model.

3 Laudation to the Cell (and Its Membranes)

Life (as we know it on earth in the traditional meaning of the term, that
investigated by biology) is directly related to cells; everything alive consists
of cells or has to do in a direct way with cells. The cell is the smallest “thing”
unanimously considered alive. It is very small and very intricate in its struc-
ture and functioning, has elaborate internal activity and complex interaction
with the neighboring cells and with the environment. It is fragile and robust
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at the same time, with a way to organize (control) the biochemical (and in-
formational) processes developed during billions of years of evolution.

Cell means membranes. The cell itself is defined – separated from its envi-
ronment – by a membrane, the external one. Inside the cell, several membranes
enclose “protected reactors,” compartments where specific biochemical pro-
cesses take place. In particular, a membrane encloses the nucleus (of eukaryotic
cells), where the genetic material is placed. Through vesicles enclosed by mem-
branes one can transport packages of molecules from a part of the cell (e.g.,
from the Golgi apparatus) to other parts of the cell in such a way that the
transported molecules are not “available” during their journey to neighboring
chemicals.

The membranes allow a selective passage of substances between the com-
partments delimited by them. This can be a simple selection by size in the
case of small molecules, or a much more intricate selection, through protein
channels which do not only select but can also move molecules from a low
concentration to a higher concentration, perhaps coupling molecules, through
so-called symport and antiport processes.

Moreover, the membranes of a cell do not delimit only compartments where
specific reactions take place in solution, inside the compartments, but many
reactions in a cell develop on the membranes, catalyzed by the many proteins
bound to them. It is said that when a compartment is too large for the local
biochemistry to be efficient, life creates membranes, both in order to create
smaller “reactors” (small enough that, through the Brownian motion, any two
of the enclosed molecules can collide – hence, react – frequently enough) and
in order to create further “reaction surfaces.” Anyway, biology contains many
fascinating facts from a computer science point of view, and the reader is
encouraged to check the validity of this assertion, e.g., through [2, 53, 7].

Life means surfaces inside surfaces, as can be learned from the title of
[41], while S. Marcus puts it in an equational form [56]: Life = DNA software
+ membrane hardware.

There are cells living alone (unicellular organisms, such as ciliates, bacte-
ria, etc.), but in general the cells are organized as tissues, organs, organisms,
and communities of organisms. All these suppose a specific organization, start-
ing with the direct communication/cooperation among neighboring cells and
ending with the interaction with the environment at various levels. Together
with the internal structure and organization of the cell, these suggest a lot
of ideas, exciting from a mathematical point of view, and potentially useful
from a computability point of view. Some of them have already been explored
in MC, but many more still await research efforts (for example, the brain,
the best “computer” ever invented, is still a major challenge for mathematical
modeling).
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4 Some General Features of Membrane Computing
Models

It is worth mentioning from the beginning, besides the essential use of mem-
branes/compartmentalization, some of the basic features of models investi-
gated in this field.

We have mentioned above the notion of a multiset. The compartments of a
cell contain substances (ions, small molecules, macromolecules) swimming in
an aqueous solution. There is no ordering there; everything is close to every-
thing; the concentration matters, i.e., the population, the number of copies of
each molecule (of course, we are abstracting/idealizing here, departing from
the biological reality). Thus, the suggestion is immediate: to work with sets
of objects whose multiplicities matters; hence, with multisets. This is a data
structure with peculiar characteristics, not new but not systematically inves-
tigated in computer science.

A multiset can be represented in many ways, but the most compact one
is in the form of a string. For instance, if the objects a, b, and c are present,
respectively, in 5, 2, and 6 copies each, we can represent this multiset by the
string a5b2c6; of course, all permutations of this string represent the same
multiset.

The string representation of multisets and the biochemical background,
where standard chemical reactions are common, suggest processing the mul-
tisets from the compartments of our computing device by means of rewriting-
like rules; this means rules of the form u → v, where u and v are multisets
of objects (represented by strings). Continuing the previous example, we can
consider a rule aab→ abcc. It indicates that two copies of object a and a copy
of object b react, and, as a result of this reaction, we get back a copy of a as
well as the copy of b (hence b behaves here as a catalyst), and we produce
two new copies of c. If this rule is applied once to the multiset a5b2c6, then,
because aab are “consumed” and then abcc are “produced,” we obtain the
multiset a4b2c8. Similarly, by using the rule bb → aac, we get the multiset
a7c7, which contains no occurrence of object b.

Two important problems arise here. The first one is related to the nonde-
terminism. Which rules should be applied and to which objects? The copies
of an object are considered identical, so we do not distinguish among them;
whether to use the first rule or the second one is a significant issue, espe-
cially because they cannot be both used at the same time (for the multiset
mentioned), as they compete for the “reactant” b. The standard solution to
this problem in membrane computing is that the rules and the objects are
chosen in a nondeterministic manner (at random, with no preference; more
rigorously, we can say that any possible evolution is allowed).

This is also related to the idea of parallelism. Biochemistry is not only (to
a certain degree) nondeterministic, but it is also (to a certain degree) parallel.
If two chemicals can react, then the reaction does not take place for only two
molecules of the two chemicals, but, in principle, for all molecules. This is
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the suggestion supporting the maximal parallelism used in many classes of P
systems: at each step, all rules which can be applied have to be applied to all
possible objects. We will come back to this important notion later, but now
we illustrate it only with the previous multiset and pair of rules. Using these
rules in the maximally parallel manner means either using the first rule twice
(thus involving four copies of a and both copies of b) or using the second rule
once (it consumes both copies of b, hence the first rule cannot be used at the
same time). In the first case, one copy of a remains unused (and the same for
all copies of c), and the resulting multiset is a3b2c10; in the second case, all
copies of a and c remain unused, and the resulting multiset is a7c7. Note that
in the latter case the maximally parallel application of rules corresponds to
the sequential (one at a time) application of the second rule.

There are also other types of rules used in MC (e.g., symport and antiport
rules), but we will discuss them later. Here we conclude with the observation
that MC deals with models which are intrinsically discrete (basically, working
with multisets of objects, with the multiplicities being natural numbers) and
evolve through rewriting-like (we can also say reaction-like) rules.

5 Computer Science Related Areas

Rewriting rules are standard rules for handling strings in formal language
theory (although other types of rules, such as insertion, deletion, context-
adjoining, are also used both in formal language theory and in P systems).
Similarly, working with strings modulo the ordering of symbols is another
old idea: commutative languages (investigated, e.g., in [28]) are nothing other
than the permutation closure of languages. In turn, the multiplicity of symbol
occurrences in a string corresponds to the Parikh image of the string, which
directly leads to vector addition systems, Petri nets, register machines, and
formal power series.

Parallelism is also considered in many areas of formal languages, and it
is the main feature of Lindenmayer systems. These systems deserve a special
discussion here, since they are a well developed branch of formal language
theory inspired by biology, specifically, by the development of multi-cellular
organisms (which can be described by strings of symbols). However, for L
systems the cells are considered as symbols; their organization in (mainly
linear) patterns, not their structure, is investigated. P systems can be seen
as dual to L systems, as they zoom into the cell, distinguishing the internal
structure and the objects evolving inside it, maybe also distinguishing (when
“zooming enough”) the structure of the objects, which leads to the category
of P systems with string objects.

However, a difference exists between the kind of parallelism in L systems
and that in P systems: in L systems the parallelism is total – all symbols of a
string are processed at the same time; in P systems we work with a maximal
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parallelism – we process as many objects as possible, but not necessarily all
of them.

Still closer to MC are the multiset processing languages, the most known
of them being Gamma [8, 9]. The standard rules of Gamma are of the form
u → v(π), where u and v are multisets and π is a predicate which should be
satisfied by the multiset to which the rule u → v is applied. The generality
of the form of rules ensures great expressivity and, in a direct manner, com-
putational universality. What Gamma does not have (at least in the initial
versions) is distributivity. Then, MC restricts the form of rules, on the one
hand as imposed by the biological roots and on the other hand in search of
mathematically simple and elegant models.

Membranes appear even in Gamma-related models, and this is the case
with CHAM, the Chemical Abstract Machine of Berry and Boudol, [12], the
direct ancestor of membrane systems; however, the membranes of CHAM are
not membranes as in cell biology, but correspond to the contents of mem-
branes, i.e., multisets, and lower level membranes together, while the goals
and the approach are completely different, directed to the algebraic treat-
ment of the processes these membranes can undergo. From this point of view,
of goals and tools, CHAM has a recent counterpart in the so-called brane
calculus (of course, “brane” comes from “membrane”) from [17] (see also [74]
for a related approach), where process algebra is used for investigating the
processes taking place on membranes and with membranes of a cell.

The idea of designing a computing device based on compartmentalization
through membranes was also suggested in [55].

Many related areas and many roots, with many common ideas and many
differences! To some extent, MC is a synthesis of some of these ideas, in-
tegrated in a framework directly inspired by cell biology, paying deserved
attention to membranes (and hence to distribution, hierarchization, commu-
nication, localization, and other related concepts), aiming – in the basic types
of devices – to find computing models, as elegant (minimalistic) as possi-
ble, as powerful as possible (in comparison with Turing machines and their
subclasses), and as efficient as possible (able to solve computationally hard
problems in feasible time).

6 The Cell-like Membrane Structure

We move now toward presenting in a more precise manner the computing
models investigated in our area, and we start by introducing one of the fun-
damental ingredients of a P system, namely, the membrane structure.

The meaning of this notion is illustrated in Figure 1, and this is what
we can see when looking (through mathematical glasses, hence abstracting as
much as necessary in order to obtain a formal model) at a standard cell.

Thus, as suggested by Figure 1, a membrane structure is a hierarchically
arranged set of membranes, contained in a distinguished external membrane
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(corresponding to the plasma membrane and usually called the skin mem-
brane). Several membranes can be placed inside the skin membrane (they
correspond to the membranes present in a cell, around the nucleus, in Golgi
apparatus, vesicles, mitochondria, etc.); a membrane without any other mem-
brane inside it is said to be elementary. Each membrane determines a com-
partment, called a region, the space delimited by it from above and from below
by the membranes placed directly inside, if any exist. Clearly, the membrane-
region correspondence is one-to-one; that is why we sometimes use the terms
interchangeably.
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Fig. 1. A membrane structure.

Usually, the membranes are identified by labels from a given set of labels.
In Figure 1, we use numbers, starting with number 1 assigned to the skin
membrane (this is the standard labeling, but the labels can be more informa-
tive “names” associated with the membranes). Also, in the figure the labels
are assigned in a one-to-one manner to membranes, but this is possible only in
the case of membrane structures which cannot grow (indefinitely), otherwise
several membranes would have the same label (we will later see such cases).
Due to the membrane-region correspondence, we identify by the same label a
membrane and its associated region.

Clearly, the hierarchical structure of membranes can be represented by a
rooted tree; Figure 2 gives the tree which describes the membrane structure
in Figure 1. The root of the tree is associated with the skin membrane and
the leaves are associated with the elementary membranes. In this way, various
graph-theoretic notions are brought onto the stage, such as the distance in the
tree, the level of a membrane, the height/depth of the membrane structure,
as well as terminology such as parent/child membrane, ancestor, etc.

Directly suggested by the tree representation is the symbolic representation
of a membrane structure, by strings of labeled matching parentheses. For
instance, a string corresponding to the structure from Figure 1 is the following:
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Fig. 2. The tree describing the membrane structure from Figure 1.
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An important aspect should now be noted: the membranes of the same
level can float around, that is, the tree representing the membrane structure
is not oriented; in terms of parentheses expressions, two subexpressions placed
at the same level represent the same membrane structure. For instance, in the
previous case, the expression
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is a representation of the same membrane structure, equivalent to (∗).

7 Evolution Rules and the Way to Use Them

In the basic variant of P systems, each region contains a multiset of symbol
objects, which correspond to the chemicals swimming in a solution in a cell
compartment. These chemicals are considered here as unstructured; that is
why we describe them with symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. Actually, there are
three main types of rules: (1) multiset-rewriting rules (one calls them, simply,
evolution rules), (2) communication rules, and (3) rules for handling mem-
branes.

In this section we present the first type of rules. They correspond to the
chemical reactions possible in the compartments of a cell; hence they are
of the form u → v, where u and v are multisets of objects. However, in
order to make the compartments cooperate, we have to move objects across
membranes, and for this we add target indications to the objects produced by
a rule as above (to the objects from multiset v). These indications are here,
in, and out, with the meanings that an object associated with the indication
here remains in the same region, one associated with the indication in goes
immediately into an adjacent lower membrane, nondeterministically chosen,
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and out indicates that the object has to exit the membrane, thus becoming
an element of the region surrounding it. An example of an evolution rule is
aab→ (a, here)(b, out)(c, here)(c, in) (this is the first of the rules considered in
Section 4, with target indications associated with the objects produced by rule
application). After using this rule in a given region of a membrane structure,
two copies of a and one of b are consumed (removed from the multiset of
that region), and one copy of a, one of b, and two of c are produced; the
resulting copy of a remains in the same region, and the same happens with
one copy of c (indications here), while the new copy of b exits the membrane,
going to the surrounding region (indication out), and one of the new copies of
c enters one of the child membranes, nondeterministically chosen. If no such
child membrane exists, that is, the membrane with which the rule is associated
is elementary, then the indication in cannot be followed, and the rule cannot
be applied. In turn, if the rule is applied in the skin region, then b will exit
into the environment of the system (and it is “lost” there, since it can never
come back). In general, the indication here is not specified (an object without
an explicit target indication is supposed to remain in the same region where
the rule is applied).

It is important to note that in this initial type of system we do not provide
similar rules for the environment, since we do not care about the objects
present there; later we will consider types of P systems where the environment
also takes part in system evolution.

A rule such as the one above, with at least two objects in its left hand
side, is said to be cooperative; a particular case is that of catalytic rules, of the
form ca → cv, where c is an object (called catalyst) which assists the object
a to evolve into the multiset v; rules of the form a→ v, where a is an object,
are called non-cooperative.

The rules can also have the form u → vδ, where δ denotes the action of
membrane dissolving: if the rule is applied, then the corresponding membrane
disappears and its contents, object and membranes alike, are left free in the
surrounding membrane; the rules of the dissolved membrane disappear with
the membrane. The skin membrane is never dissolved.

The communication of objects through membranes evokes the fact that
biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with consumption of energy), in a rather selective manner. How-
ever, the fact that the communication of objects from a compartment to a
neighboring compartment is controlled by the “reaction rules” is mathemati-
cally attractive, but is not quite realistic from a biological point of view; that
is why variants were also considered where the two processes are separated:
the evolution is controlled by rules as above, without target indications, and
the communication is controlled by specific rules (e.g., by symport/antiport
rules).

It is also worth noting that evolution rules are stated in terms of names of
objects, while their application/execution is done using copies of objects – re-
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member the example from Section 4, where the multiset a5b2c6 was processed
by a rule of the form aab→ a(b, out)c(c, in), which, in the maximally parallel
manner, is used twice, for the two possible sub-multisets aab.

We have arrived in this way at the important feature of P systems, con-
cerning the way of using the rules. The key phrase in this respect is: in the
maximally parallel manner, nondeterministically choosing the rules and the
objects.

Specifically, this means that we assign objects to rules, nondeterministi-
cally choosing the objects and the rules until no further assignment is possible.
Mathematically stated, we look to the set of rules, and try to find a multiset
of rules, by assigning multiplicities to rules, with two properties: (i) the mul-
tiset of rules is applicable to the multiset of objects available in the respective
region; that is, there are enough objects to apply the rules a number of times
as indicated by their multiplicities; and (ii) the multiset is maximal, i.e., no
further rule can be added to it (no multiplicity of a rule can be increased),
because of the lack of available objects.

Thus, an evolution step in a given region consists of finding a maximal
applicable multiset of rules, removing from the region all objects specified
in the left hand sides of the chosen rules (with multiplicities as indicated
by the rules and by the number of times each rule is used), producing the
objects from the right hand sides of the rules, and then distributing these
objects as indicated by the targets associated with them. If at least one of
the rules introduces the dissolving action δ, then the membrane is dissolved,
and its contents become part of the parent membrane, provided that this
membrane was not dissolved at the same time; otherwise we stop at the first
upper membrane which was not dissolved (the skin membrane at least remains
intact).

8 A Formal Definition of a Transition P System

Systems based on multiset-rewriting rules as above are usually called transi-
tion P systems, and we preserve here this terminology (although “transitions”
are present in all types of systems).

Of course, when presenting a P system we have to specify the alphabet
of objects (a usual finite nonempty alphabet of abstract symbols identifying
the objects), the membrane structure (it can be represented in many ways,
but the one most used is by a string of labeled matching parentheses), the
multisets of objects present in each region of the system (represented in the
most compact way by strings of symbol objects), the sets of evolution rules
associated with each region, and the indication about the way the output is
defined (see below).

Formally, a transition P system (of degree m ≥ 1) is a construct of the
form

Π = (O,C, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, io),
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where:

1. O is the (finite and nonempty) alphabet of objects,
2. C ⊂ O is the set of catalysts,
3. µ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . ,m;

we say that the membrane structure, and hence the system, is of degree
m,

4. w1, w2, . . . , wm are strings over O representing the multisets of objects
present in regions 1, 2, . . . ,m of the membrane structure,

5. R1, R2, . . . , Rm are finite sets of evolution rules associated with regions
1, 2, . . . ,m of the membrane structure,

6. io is either one of the labels 1, 2, . . . ,m, and the respective region is the
output region of the system, or it is 0, and the result of a computation is
collected in the environment of the system.

The rules are of the form u → v or u → vδ, with u ∈ O+ and v ∈
(O×Tar)∗, where1 Tar = {here, in, out}. The rules can be cooperative (with
u arbitrary), non-cooperative (with u ∈ O − C), or catalytic (of the form
ca→ cv or ca→ cvδ, with a ∈ O−C, c ∈ C, and v ∈ ((O−C)×Tar)∗); note
that the catalysts never evolve and never change the region, they only help
the other objects to evolve.

A possible restriction about the region io in the case when it is an internal
one is to consider only regions enclosed by elementary membranes for output
(that is, io should be the label of an elementary membrane of µ).
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Fig. 3. The initial configuration of a P system, rules included.

In general, the membrane structure and the multisets of objects from its
compartments identify a configuration of a P system. The initial configuration

1
By V ∗

we denote the set of all strings over an alphabet V , the empty string λ

included, and by V +
we denote the set V ∗ −{λ} of all nonempty strings over V .
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is given by specifying the membrane structure and the multisets of objects
available in its compartments at the beginning of a computation, that is,
by (µ,w1, . . . , wm). During the evolution of the system, by applying the rules,
both the multisets of objects and the membrane structure can change. We will
see how this is done in the next section; here we conclude with an example of
a P system, represented in Figure 3. It is important to note that adding the
set of rules to the initial configuration, placed in the corresponding regions,
we have a complete and concise presentation of the system (the indication of
the output region can also be added in a suitable manner, for instance, writing
“output” inside it).

9 Defining Computations and Results of Computations

In their basic variant, membrane systems are synchronous devices, in the sense
that a global clock is assumed, which marks the time for all regions of the
system. In each time unit a transformation of a configuration of the system
– we call it transition – takes place by applying the rules in each region in a
nondeterministic and maximally parallel manner. As explained in the previous
sections, this means that the objects to evolve and the rules governing this
evolution are chosen in a nondeterministic way, and this choice is “exhaustive”
in the sense that, after the choice is made, no rule can be applied in the same
evolution step to the remaining objects.

A sequence of transitions constitutes a computation. A computation is
successful if it halts, reaches a configuration where no rule can be applied
to the existing objects, and the output region io still exists in the halting
configuration (in the case where io is the label of a membrane, it can be
dissolved during the computation, but the computation is then no longer
successful). With a successful computation we can associate a result in various
ways. If we have an output region specified, and this is an internal region, then
we have an internal output: we count the objects present in the output region
in the halting configuration and this number is the result of the computation.
When we have io = 0, we count the objects which leave the system during
the computation, and this is called external output. In both cases the result
is a number. If we distinguish among different objects, then we can have as
the result a vector of natural numbers. The objects which leave the system
can also be arranged in a sequence according to the time when they exit the
skin membrane, and in this case the result is a string (if several objects exit
at the same time, then all their permutations are accepted as a substring of
the result). Note that non-halting computations provide no output (we cannot
know when a number is “completely computed” before halting); if the output
membrane is dissolved during the computation, then the computation aborts,
and no result is obtained (of course, this makes sense only in the case of
internal output).



14 Gh. Păun

A possible extension of the definition is to consider a terminal set of ob-
jects, T ⊆ O, and to count only the copies of objects from T , discarding the
objects from O− T present in the output region. This allows some additional
leeway in constructing and “programming” a P system, because we can ignore
some auxiliary objects (e.g., the catalysts).

Because of the nondeterminism of the application of rules, starting from
an initial configuration we can get several successful computations, and hence
several results. Thus, a P system computes (one also says generates) a set of
numbers (or a set of vectors of numbers, or a language, depending on the way
the output is defined). The case when we get a language is important in view
of the qualitative difference between the “loose” data structure we use inside
the system (vectors of numbers) and the data structure of the result, strings,
where we also have a “syntax,” a positional information.

For a given system Π we denote by N(Π) the set of numbers computed by
Π in the above way. When we consider the vector of multiplicities of objects
from the output region, we write Ps(Π). In turn, in the case where we take
as (external) output the strings of objects leaving the system, we denote the
language of these strings by L(Π).

Let us illustrate the previous definitions by examining the computations
of the system from Figure 3, with the output region being the environment.

We have objects only in the central membrane, that with label 3; hence
only here can we apply rules. Specifically, we can repeatedly apply the rule
a → ab in parallel with f → ff , and in this way the number of copies of b
grows each step by one, while the number of copies of f is doubled in each
step. If we do not apply the rule a→ bδ (again in parallel with f → ff), which
dissolves the membrane, then we can continue in this way forever. Thus, in
order to ever halt, we have to dissolve membrane 3. Assume that this happens
after n ≥ 0 steps of using the rules a→ ab and f → ff . When membrane 3 is
dissolved, its contents (n+1 copies of b, 2n+1 copies of f , and one copy of the
catalyst c) are left free in membrane 2, which can now start using its rules.
In the next step, all objects b become d. Let us examine the rules ff → f
and cf → cdδ. The second rule dissolves membrane 2, and hence passes its
contents to membrane 1. If among the objects which arrive in membrane 1
there is at least one copy of f , then the rule f → f from region 1 can be
used forever and the computation never stops; moreover, if the rule ff → f
is used at least once, in parallel with the rule cf → cdδ, then at least one
copy of f is present. Therefore, the rule cf → cdδ should be used only if
region 2 contains only one copy of f (note that, because of the catalyst, the
rule cf → cdδ can be used only for one copy of f). This means that the rule
ff → f was used always for all available pairs of f , that is, at each step the
number of copies of f is divided by 2. This is already done once in the step
where all copies of b become d, and will be done from now on as long as at least
two copies of f are present. Simultaneously, at each step, each d produces one
copy of e. This process can continue until we get a configuration with only one
copy of f present; at that step we have to use the rule cf → cdδ, hence also
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membrane 2 is dissolved. Because we have applied the rule d→ de, in parallel
for all copies of d (there are n + 1 such copies) during n + 1 steps, we have
(n+1)(n+1) copies of e, n+2 copies of d (one of them produced by the rule
cf → cdδ), and one copy of c in the skin membrane of the system (the unique
membrane still present). The objects e are sent out, and the computation
halts. Therefore, we compute in this way the number (n + 1)2 for n ≥ 0, that
is, N(Π) = {n2 | n ≥ 1}.

10 Using Symport and Antiport Rules

The multiset rewriting rules correspond to reactions taking place in the cell,
inside the compartments. However, an important part of the cell activity
is related to the passage of substances through membranes, and one of the
most interesting ways to handle this trans-membrane communication is by
coupling molecules. The process by which two molecules pass together across
a membrane (through a specific protein channel) is called symport; when the
two molecules pass simultaneously through a protein channel, but in opposite
directions, the process is called antiport.

We can formalize these operations in an obvious way: (ab, in) or (ab, out)
are symport rules, stating that a and b pass together through a membrane, en-
tering in the former case and exiting in the latter case; similarly, (a, out; b, in)
is an antiport rule, stating that a exits and, at the same time, b enters the
membrane. Separately, neither a nor b can cross a membrane unless we have
a rule of the form (a, in) or (a, out), called, for uniformity, the uniport rule.

Of course, we can generalize these types of rules, by considering sym-
port rules of the form (x, in) and (x, out), and antiport rules of the form
(z, out;w, in), where x, z, and w are multisets of arbitrary size; one says that
|x| is the weight of the symport rule, and max(|z|, |w|) is the weight of the
antiport rule2.

Now, such rules can be used in a P system instead of the target indications
here, in, and out: we consider multiset rewriting rules of the form u → v
(or u → vδ) without target indications associated with the objects from v,
as well as symport/antiport rules for communication of the objects between
compartments. Such systems, called evolution-communication P systems, were
considered in [18] (for various restricted types of rules of the two forms).

Here, we do not go down that direction, but stay closer both to the chrono-
logical evolution of the domain and to the mathematical minimalism, and we
check whether we can compute using only communication, that is, only sym-
port and antiport rules. This leads to considering one of the most interesting
classes of P systems, which we formally introduce here.

A P system with symport/antiport rules is a construct of the form

2
By |u| we denote the length of the string u ∈ V ∗

for any alphabet V .
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Π = (O,µ,w1, . . . , wm, E,R1, . . . , Rm, io),

where:

1. O is the alphabet of objects,
2. µ is the membrane structure (of degree m ≥ 1, with the membranes

labeled 1, 2, . . . ,m in a one-to-one manner),
3. w1, . . . , wm are strings over O representing the multisets of objects present

in the m compartments of µ in the initial configuration of the system,
4. E ⊆ O is the set of objects supposed to appear in the environment in

arbitrarily many copies,
5. R1, . . . , Rm are the (finite) sets of rules associated with the m membranes

of µ,
6. io ∈ H is the label of a membrane of µ, which indicates the output region

of the system.

The rules from R can be of two types, symport rules and antiport rules,
of the forms specified above.

The rules are used in the nondeterministic maximally parallel manner. We
define transitions, computations, and halting computations in the usual way.
The number (or the vector of multiplicities) of objects present in region io in
the halting configuration is said to be computed by the system by means of
that computation; the set of all numbers (or vectors of numbers) computed
in this way by Π is denoted by N(Π) (by Ps(Π), respectively).

We note here a new component of the system, the set E of objects which
are present in the environment in arbitrarily many copies; because we move
objects only across membranes and because we start with finite multisets
of objects present in the system, we cannot increase the number of objects
necessary for the computation if we do not provide a supply of objects, and this
can be done by considering the set E. Because the environment is supposedly
inexhaustible, the objects from E are inexhaustible; regardless of how many
of them are brought into the system, arbitrarily many remain outside.

Another new feature is that this time the rules are associated with mem-
branes, and not with regions, and this is related to the fact that each rule
governs communication through a specific membrane.

The P systems with symport/antiport rules have a series of attractive
characteristics: they are fully based on biological types of multiset processing
rules; the environment plays a direct role in the evolution of the system; the
computation is done only by communication, no object is changed, and the
objects move only across membranes; no object is created or destroyed, and
hence the conservation law is observed (as given in the previous sections, this
is not valid for multiset rewriting rules because, for instance, rules of the form
a→ aa or ff → f are allowed).
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11 An Example (Like a Proof. . . )

Because P systems with symport/antiport rules constitute an important class
of P systems, it is worth considering an example; however, instead of a simple
example, we directly give a general construction for simulating a register ma-
chine. In this way, we also introduce one of the widely used proof techniques
for the universality results in this area. (Of course, the biologist can safely
skip this section.)

Informally speaking, a register machine consists of a specified number of
counters (also called registers) which can hold any natural number, and which
are handled according to a program consisting of labeled instructions; the
counters can be increased or decreased by 1 – the decreasing possible only if a
counter holds a number greater than or equal to 1 (we say that it is nonempty)
– and checked whether they are nonempty.

Formally, a (nondeterministic) register machine is a device M = (m,B, l0,
lh, R), where m ≥ 1 is the number of counters, B is the (finite) set of instruc-
tion labels, l0 is the initial label, lh is the halting label, and R is the finite set
of instructions labeled (hence uniquely identified) by elements from B. The
labeled instructions are of the following forms:

– l1 : (add(r), l2, l3), 1 ≤ r ≤ m (add 1 to counter r and go nondeterminis-
tically to one of the instructions with labels l2, l3),

– l1 : (sub(r), l2, l3), 1 ≤ r ≤ m (if counter r is not empty, then subtract
1 from it and go to the instruction with label l2, otherwise go to the
instruction with label l3).

A counter machine generates a k-dimensional vector of natural numbers in
the following manner: we distinguish k counters as output counters (without
loss of generality, they can be the first k counters), and we start computing
with all m counters empty, with the instruction labeled l0; if the label lh
is reached, then the computation halts and the values of counters 1, 2, . . . , k
are the vector generated by the computation. The set of all vectors from Nk

generated in this way by M is denoted by Ps(M). If we want to generate only
numbers (1-dimensional vectors), then we have the result of a computation in
counter 1, and the set of numbers computed by M is denoted by N(M). It is
known (see [60]) that nondeterministic counter machines with k + 2 counters
can compute any set of Turing computable k-dimensional vectors of natural
numbers (hence machines with three counters generate exactly the family of
Turing computable sets of numbers).

Now, a register machine can be easily simulated by a P system with sym-
port/antiport rules. The idea is illustrated in Figure 4, where we have repre-
sented the initial configuration of the system, the rules associated with the
unique membrane, and the set E of objects present in the environment.

The value of each register r is represented by the multiplicity of object
ar, 1 ≤ r ≤ m, in the unique membrane of the system. The labels from B,
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for l1 : (sub(r), l2, l3)

(lh, out)

Fig. 4. An example of a symport/antiport P system.

as well as their primed versions, are also objects of our system. We start
with the unique object l0 present in the system. In the presence of a label
object l1 we can simulate the corresponding instruction l1 : (add(r), l2, l3) or
l1 : (sub(r), l2, l3).

The simulation of an add instruction is clear, so we discuss only a sub

instruction. The object l1 exits the system in exchange of the two objects
l′1l

′′

1 (rule (l1, out; l′1l
′′

1 , in)). In the next step, if any copy of ar is present in
the system, then l′1 has to exit (rule (l′1ar, out; l′′′1 , in)), thus diminishing the
number of copies of ar by one, and bringing inside the object l′′′1 ; if no copy
of ar is present, which corresponds to the case when the register r is empty,
then the object l′1 remains inside. Simultaneously, rule (l′′1 , out; liv1 , in) is used,
bringing inside the “checker” liv1 . Depending on what this object finds in the
system, either l′′′1 or l′1, it introduces the label l2 or l3, respectively, which
corresponds to the correct continuation of the computation of the register
machine.

When the object lh is introduced, it is expelled into the environment and
the computation stops.

Clearly, the (halting) computations in Π directly correspond to (halting)
computations in M ; hence Ps(M) = Ps(Π).

12 A Large Panoply of Possible Extensions

We have mentioned the flexibility and the versatility of the formalism of MC,
and we have already mentioned several types of systems, making use of several
types of rules, with the output of a computation defined in various ways.
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We continue here in this direction, by presenting a series of possibilities for
changing the form of rules and/or the way of using them. The motivation for
such extensions comes both from biology, i.e., from the desire to capture more
and more biological facts, and from mathematics and computer science, i.e.,
from the desire to have more powerful or more elegant models.

First, let us return to the basic target indications, here, in, and out, as-
sociated with the objects produced by rules of the form u→ v; here and out
indicate precisely the region where the object is to be placed, but in introduces
a degree of nondeterminism in the case where there are several inner mem-
branes. This nondeterminism can be avoided by indicating also the label of the
target membrane, that is, using target indications of the form inj , where j is
a label. An intermediate possibility, more specific than in but not completely
unambiguous like inj , is to assign the electrical polarizations, +,−, and 0, to
both objects and membranes. The polarizations of membranes are given from
the beginning (or can be changed during the computation), the polarization
of objects is introduced by rules, using rules of the form ab→ c+c−(d0, tar).
The charged objects have to go to any lower level membrane of opposite po-
larization, while objects with neutral polarization either remain in the same
region or get out, depending on the target indication tar ∈ {here, out} (this
is the case with d in the previous rule).

A spectacular generalization, considered recently in [26], is to use indi-
cations inj , for any membrane j from the system; hence the object is “tele-
ported” immediately at any distance in the membrane structure. Also, com-
mands of the form in∗ and out∗ were used, with the meaning that the object
should be sent to (one of) the elementary membranes from the current mem-
brane or to the skin region, respectively, no matter how far the target is.

We have considered the membrane dissolution action, represented by the
symbol δ; we may imagine that such an action decreases the thickness of the
membrane from the normal thickness, 1, to 0. A dual action can be also used,
of increasing the thickness of a membrane, from 1 to 2. We indicate this action
by τ . Assume that δ also decreases the thickness from 2 to 1, that the thickness
cannot have values other than 0 (membrane dissolved), 1 (normal thickness),
and 2 (membrane impermeable), and that when both δ and τ are introduced
simultaneously in the same region, by different rules, their actions cancel, and
the thickness of the membrane does not change. In this way, we can nicely
control the work of the system: if a rule introduces a target indication in or
out and the membrane which has to be crossed by the respective object has
thickness 2, and hence is non-permeable, then the rule cannot be applied.

Let us look now to the catalysts. In the basic definition they never change
their state or their place like ordinary objects do. A “democratic” decision is
to also let the catalysts evolve within certain limits. Thus, mobile catalysts
were proposed, moving across membranes like any object (but not themselves
changing). The catalysts were then allowed to change their state, for instance,
oscillating between c and c̄. Such a catalyst is called bistable, and the natural
generalization is to consider k-stable catalysts, allowed to change along k
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given forms. Note that the number of catalysts is not changed; we do not
produce or remove catalysts (provided they do not leave the system), and
this is important in view of the fact that the catalysts are in general used for
inhibiting the parallelism (a rule ca→ cv can be used simultaneously at most
as many times as copies of c are present).

There are several possibilities for controlling the use of rules, leading in
general to a decrease in the degree of nondeterminism of a system. For in-
stance, a mathematically and biologically motivated possibility is to consider
a priority relation on the set of rules from a given region, in the form of a
partial order relation on the set of rules from that region. This corresponds
to the fact that certain reactions/reactants are more active than others, and
can be interpreted in two ways: as a competition for reactants/objects, or in a
strong sense. In the latter sense, if a rule r1 has priority over a rule r2 and r1

can be applied, then r2 cannot be applied, regardless of whether rule r1 leaves
objects which it cannot use. For instance, if r1 : ff → f and r2 : cf → cdδ,
as in the example from Section 8, and the current multiset is fffc, because
rule r1 can be used, consuming two copies of f , we do not also use the second
rule for the remaining fc. In the weak interpretation of the priority, the use of
the second rule is allowed: the rule with the maximal priority takes as many
objects as possible, and, if there are objects still remaining, the next rule in
the decreasing order of priority is used for as many objects as possible, and
we continue in this way until no further rule can be added to the multiset of
applicable rules.

Also coming directly from bio-chemistry are the rules with promoters and
inhibitors, written in the form u→ v|z and u→ v|¬z, respectively, where u, v,
and z are multisets of objects; in the case of promoters, the rule u→ v can be
used in a given region only if all objects from z are present in the same region,
and they are different from the (copies of) objects from u; in the inhibitors
case, no object from z should be present in the region and be different from
the objects from u. The promoting objects can evolve at the same time by
other rules, or by the same rule u → v but by another instance of it (e.g.,
a → b|a can be used twice in a region containing two copies of a, with each
instance of a→ b|a acting on one copy of a and promoted by the other copy,
but it cannot be used in a region where a appears only once).

Interesting combinations of rewriting-communication rules are those con-
sidered in [77], where rules of the following three forms are proposed: a →
(a, tar), ab → (a, tar1)(b, tar2), and ab → (a, tar1)(b, tar2)(c, come), where
a, b, and c are objects, and tar, tar1, and tar2 are target indications of the
forms here, in, and out, or inj , where j is the label of a membrane. Such a
rule just moves objects from one region to another, with rules of the third
type usable only in the skin region; (c, come) means that a copy of c is
brought into the system from the environment. Clearly, these rules are differ-
ent from the symport/antiport rules; for instance, the two objects ab from a
rule ab→ (a, tar1)(b, tar2) start from the same region, and can go in different
directions, one up and the other down, in the membrane structure.
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We are left with one of the most general types of rule, introduced in [11]
under the name boundary rules, directly capturing the idea that many reac-
tions take place on the inner membranes of a cell, depending maybe on the
contents of both the inner and the outer regions adjacent to that membrane.
These rules are of the form xu[

i
vy → xu′[

i
v′y, where x, u, u′, v, v′, and y are

multisets of objects and i is the label of a membrane. Their meaning is that in
the presence of the objects from x outside and from y inside the membrane i,
the multiset u from outside changes to u′, and, simultaneously, the multiset v
from inside changes to v′. The generality of this kind of rule is apparent, and
it can be decreased by imposing various restrictions on the multisets involved.

There also are other variants considered in the literature, especially in the
way of controlling the use of the rules, but we do not continue here in that
direction.

13 P Systems with Active Membranes

We pass now to presenting a class of P systems, which, together with the ba-
sic transition systems and the symport/antiport systems, is one of the three
central types of cell-like P systems considered in membrane computing. As in
the above case of boundary rules, they start from the observation that mem-
branes play an important role in the reactions which take place in a cell, and,
moreover, they can evolve themselves, either by changing their characteristics
or by dividing.

This last idea especially has motivated the class of P systems with active
membranes, which are constructs of the form

Π = (O,H, µ,w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, consisting of m membranes initially having

neutral polarizations labeled (not necessarily in a one-to-one manner) with
elements of H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed
in the m regions of µ;

6. R is a finite set of developmental rules, of the following forms:
(a) [

h
a→ v]

e

h
, for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes but not directly involving
the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);



22 Gh. Păun

(b) a[
h

]
e1

h
→ [

h
b]

e2

h
, for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O

(in communication rules; an object is introduced in the membrane,
and possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(c) [
h
a ]

e1

h
→ [

h
]
e2

h
b, for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O

(out communication rules; an object is sent out of the membrane,
and possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(d) [
h
a ]

e

h
→ b, for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O

(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [
h
a ]

e1

h
→ [

h
b ]

e2

h
[
h
c ]

e3

h
, for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label,
and possibly of different polarizations; the object specified in the rule
is replaced in the two new membranes possibly by new objects; the
remaining objects are duplicated and may evolve in the same step by
rules of type (a)).

The objects evolve in the maximally parallel manner, used by rules of
type (a) or by rules of the other types, and the same is true at the level of
membranes, which evolve by rules of types (b)–(e). Inside each membrane, the
rules of type (a) are applied in parallel, with each copy of an object used by
only one rule of any type from (a) to (e). Each membrane can be involved
in only one rule of types (b)–(e) (the rules of type (a) are not considered to
involve the membrane where they are applied). Thus, in total, the rules are
used in the usual nondeterministic maximally parallel manner, in a bottom-up
way (we use first the rules of type (a), and then the rules of other types; in
this way, in the case of dividing membranes, the result of using first the rules
of type (a) is duplicated in the newly obtained membranes). Also, as usual,
only halting computations give a result, in the form of the number (or the
vector) of objects expelled into the environment during the computation.

The set H of labels has been specified because it is possible to allow the
change of membrane labels. For instance, a division rule can be of the more
general form

(e′) [
h1

a ]
e1

h1

→ [
h2

b ]
e2

h2

[
h3

c ]
e3

h3

,
for h1, h2, h3 ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O.

The change of labels can also be considered for rules of types (b) and (c).
Also, we can consider the possibility of dividing membranes into more than
two copies, or even of dividing non-elementary membranes (in such a case, all
inner membranes are duplicated in the new copies of the membrane).

It is important to note that in the case of P systems with active mem-
branes, the membrane structure evolves during the computation, not only by
decreasing the number of membranes, due to dissolution operations (rules of
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type (d)), but also by increasing the number of membranes by division. This
increase can be exponential in a linear number of steps: using a division rule
successively n steps, due to the maximal parallelism, we get 2n copies of the
same membrane. This is one of the most investigated ways of obtaining an
exponential working space in order to trade time for space and solve compu-
tationally hard problems (typically NP-complete problems) in feasible time
(typically polynomial or even linear time).

Some details can be found in Section 20, but we illustrate here the way
of using membrane division in such a framework with an example dealing
with the generation of all 2n truth assignments possible for n propositional
variables.

Assume that we have the variables x1, x2, . . . , xn; we construct the follow-
ing system (of degree 2):

Π = (O,H, µ,w1, w2, R),

O = {ai, ci, ti, fi | 1 ≤ i ≤ n} ∪ {check},

H = {1, 2},

µ = [1[2 ]2]1,

w1 = λ,

w2 = a1a2 . . . anc1,

R = {[2ai]
0
2 → [2ti]

0
2[2fi]

0
2 | 1 ≤ i ≤ n}

∪ {[2ci → ci+1]
0
2 | 1 ≤ i ≤ n− 1}

∪ {[
2
cn → check]

0
2
, [

2
check]

0
2
→ check[

2
]
+
2
}.

We start with the objects a1, . . . , an in the inner membrane and we divide
this membrane repeatedly by means of the rules [ 2ai]

0
2 → [2ti]

0
2[2fi]

0
2; note

that the object ai used in each step is nondeterministically chosen, but each
division replaces that object by ti (for true) in one membrane and with fi (for
false) in the other membrane; hence after n steps the configuration obtained
is the same regardless of the order of expanding the objects. Specifically, we
get 2n membranes with label 2, each one containing a truth assignment for
the n variables. Simultaneously with the division, we have to use the rules
of type (a) which update the “counter” c; hence at each step we increase by
one the subscript of c. Therefore, when all variables have been expanded, we
get the object check in all membranes (the rule of type (a) is used first, and
after that the result is duplicated in the newly obtained membranes). In step
n + 1, this object exits each copy of membrane 2, changing its polarization
to positive; this is meant to signal the fact that the generation of all truth
assignments is completed, and we can start checking the truth values of (the
clauses of) the propositional formula.

The previous example was chosen also to show that the polarizations of
membranes are not used while generating the truth assignments, though they
might be useful after that; till now, this is the case in all polynomial time
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solutions to NP-complete problems obtained in this framework, in particu-
lar for solving SAT (satisfiability of propositional formulas in the conjunctive
normal form). An important open problem in this area is whether or not the
polarizations can be avoided. This can be done if other ingredients are con-
sidered, such as label changing or division of non-elementary membranes, but
without adding such features the best result obtained so far is that from [3]
where it is proved that the number of polarizations can be reduced to two.

14 A Panoply of Possibilities for Having a Dynamical
Membrane Structure

Membrane dissolving and dividing are only two of the many possibilities of
handling the membrane structures. One additional possibility investigated
early is membrane creation, based on rules of the form a → [

h
v]

h
, where a

is an object, v is a multiset of objects, and h is a label from a given set of
labels. Using such a rule in a membrane j, we create a new membrane, with
label h, having inside the objects specified by v. Because we know the label
of the new membrane, we know the rules which can be used in its region
(a “dictionary” of possible membranes is given, specifying the rules to be
used in any membrane with labels in a given set). Because rules for handling
membranes are of a more general interest (e.g., for applications), we illustrate
them in Figure 5, where the reversibility of certain pairs of operations is also
made visible.

For instance, converse to membrane division, the operation of merging the
contents of two membranes can be considered; formally, we can write such a
rule in the form [

h1

a]
h1

[
h2

b]
h2

→ [
h3

c]
h3

, where a, b, and c are objects and
h1, h2, and h3 are labels (we have considered the general case, where the labels
can be changed).

Actually, the merging operation can also be considered as the reverse of
the separation operation, formalized as follows: let K ⊆ O be a set of objects;
a separation with respect to K is done by a rule of the form [

h1

]
h1

→
[
h2

K]
h2

[
h3

¬K]
h3

, with the meaning that the content of membrane h1 is split
into two membranes, with labels h2 and h3, the first one containing all objects
in K and the second one containing all objects not in K.

The operations of endocytosis and exocytosis (we use these general names,
although in biology there are distinctions depending on the size of the ob-
jects and the number of objects moved; phagocytosis, pinocytosis, etc.) are
also simple to formalize. For instance, [

h1

a]
h1

[
h2

]
h2

→ [
h2

[
h1

b]
h1

]
h2

, for
h1, h2 ∈ H, a, b ∈ V , is an endocytosis rule, stating that an elementary
membrane labeled h1 enters the adjacent membrane labeled h2 under the
control of object a; the labels h1 and h2 remain unchanged during this
process; however, the object a may be modified to b. Similarly, the rule
[
h2

[
h1

a]
h1

]
h2

→ [
h1

b]
h1

[
h2

]
h2

, for h1, h2 ∈ H, a, b ∈ V , indicates an exocyto-
sis operation: an elementary membrane labeled h1 is sent out of a membrane
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labeled h2 under the control of object a; the labels of the two membranes re-
main unchanged, but the object a from membrane h1 may be modified during
this operation.

Finally, let us mention the operation of gemmation, by which a membrane
is created inside a membrane h1 and sent to a membrane h2; the moving mem-
brane is dissolved inside the target membrane h2, thus releasing its contents
there. In this way, multisets of objects can be transported from a membrane
to another one in a protected way: the enclosed objects cannot be processed
by the rules of the regions through which the travelling membrane passes. The
travelling membrane is created with a label of the form @h2

, which indicates
that it is a temporary membrane, having to get dissolved inside the mem-
brane with label h2. Corresponding to the situation from biology, in [13, 14]
one considers only the case where the membranes h1, h2 are adjacent and
placed directly in the skin membrane, but the operation can be generalized.
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Fig. 5. Membrane handling operations.

A gemmation rule is of the form a → [@h2

u]@h2

, where a is an object

and u a multiset of objects (but it can be generalized by creating several
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travelling membranes at the same time, with different destinations); the result
of applying such a rule is as illustrated in the bottom of Figure 5. Note that
the crossing of one membrane takes one time unit (it is supposed that the
travelling membrane finds the shortest path from the region where it is created
to the target region).

Several other operations with membranes were considered, e.g., in the
context of applications to linguistics, as well as in [47] and in other papers,
but we do not enter into further details here.

15 Structuring the Objects

In the previous classes of P systems, the objects were considered atomic, iden-
tified only by their name, but in a cell many chemicals are complex molecules
(e.g., proteins, DNA molecules, other large macromolecules), whose structure
can be described by strings or more complex data, such as trees, arrays, etc.
Also, from a mathematical point of view it is natural to consider P systems
with string objects.

Such a system has the form

Π = (V, T, µ,M1, . . . ,Mm, R1, . . . , Rm),

where V is the alphabet of the system, T ⊆ V is the terminal alphabet, µ
is the membrane structure (of degree m ≥ 1), M1, . . . ,Mm are finite sets of
strings present in the m regions of the membrane structure, and R1, . . . , Rm

are finite sets of string-processing rules associated with the m regions of µ.
We have given here the system in general form, with a specified terminal

alphabet (we say that the system is extended; if V = T , then the system is
said to be non-extended), and without specifying the type of rules. These rules
can be of various forms, but we consider here only two cases: rewriting and
splicing.

In a rewriting P system, the string objects are processed by rules of the
form a → u(tar), where a → u is a context-free rule over the alphabet V
and tar is one of the target indications here, in, and out. When such a rule is
applied to a string x1ax2 in a region i, we obtain the string x1ux2, which is
placed in region i, in any inner region, or in the surrounding region, depending
on whether tar is here, in, or out, respectively. The strings which leave the
system do not come back; if they are composed only of symbols from T , then
they are considered as generated by the system. The language of all strings
generated in this way is denoted by L(Π).

There are several differences from the previous classes of P systems: we
work with sets of string objects, not with multisets; in order to introduce a
string in the language L(Π) we do not need to have a halting computation,
because the strings do not change after leaving the system; each string is
processed by only one rule (the rewriting is sequential at the level of strings),
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but in each step all strings from all regions which can be rewritten by local
rules are rewritten by one rule.

In a splicing P system, we use splicing rules such as those in DNA comput-
ing [38, 70], that is, of the form u1#u2$u3#u4, where u1, u2, u3, and u4 are
strings over V . For four strings x, y, z, w ∈ V ∗ and a rule r : u1#u2$u3#u4,
we write

(x, y) `r (z, w) if and only if x = x1u1u2x2, y = y1u3u4y2,

z = x1u1u4y2, w = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

We say that we splice x and y at the sites u1u2 and u3u4, respectively, and
the result of the splicing (obtained by recombining the fragments obtained by
cutting the strings as indicated by the sites) are the strings z and w.

In our case we add target indications to the two resulting strings, that
is, we consider rules of the form r : u1#u2$u3#u4(tar1, tar2), with tar1 and
tar2 one of here, in, and out. The meaning is as standard: after splicing the
strings x, y from a given region, the resulting strings z, w are moved to the
regions indicated by tar1, tar2, respectively. The language generated by such
a system consists again of all strings over T sent into the environment during
the computation, without considering only halting computations.

We do not give here an example of a rewriting or a splicing P system, but
we move on to introducing an important extension of rewriting rules, namely,
rewriting with replication [49]. In such systems, the rules are of the form
a → (u1, tar1)||(u2, tar2)|| . . . ||(un, tarn), with the meaning that by rewrit-
ing a string x1ax2 we get n strings, x1u1x2, x1u2x2, . . . , x1unx2, which have
to be moved in the regions indicated by targets tar1, tar2, . . . , tarn, respec-
tively. In this case we work again with halting computations, and the mo-
tivation is that if we do not impose the halting condition, then the strings
x1uix2 evolve completely independently; hence we can replace the rule a →
(u1, tar1)||(u2, tar2)|| . . . ||(un, tarn) with n rules a → (ui, tari), 1 ≤ i ≤ n,
without changing the language; that is, replication makes a difference only in
the halting case.

The replicated rewriting is important because it provides the possibility
to replicate strings, thus enlarging the workspace, and indeed this is one of
the frequently used ways to generate an exponential workspace in linear time,
used then for solving computationally hard problems in polynomial time.

Besides these types of rules for string processing, other kinds of rules were
also used, such as insertion and deletion, context adjoining in the sense of
Marcus contextual grammars [63], splitting, conditional concatenation, and so
on, sometimes with motivations from biology, where several similar operations
can be found, e.g., at the genome level.
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16 Tissue-like P Systems

We pass now to consider a very important generalization of the membrane
structure, passing from the cell-like structure, described by a tree, to a
tissue-like structure, with the membranes placed in the nodes of an arbi-
trary graph (which corresponds to the complex communication networks es-
tablished among adjacent cells by making their protein channels cooperate,
moving molecules directly from one cell to another, [53]). Actually, in the basic
variant of tissue-like P systems, this graph is virtually a total one; what mat-
ters is the communication graph, dynamically defined during computations.
In short, several (elementary) membranes – also called cells – are freely placed
in a common environment; they can communicate either with each other or
with the environment by symport/antiport rules. Specifically, we consider an-
tiport rules of the form (i, x/y, j), where i, j are labels of cells (or at most
one is zero, identifying the environment), and x, y are multisets of objects.
This means that the multiset x is moved from i to j at the same time as the
multiset y is moved from j to i. If one of the multisets x, y is empty, then we
have, in fact, a symport rule. Therefore, the communication among cells is
done either directly, in one step, or indirectly, through the environment: one
cell throws some objects out and other cells can take these objects in the next
step or later. As in symport/antiport P systems, the environment contains
a specified set of objects in arbitrarily many copies. A computation devel-
ops as standard, starting from the initial configuration and using the rules in
the nondeterministic maximally parallel manner. When halting, we count the
objects from a specified cell, and this is the result of the computation.

The graph plays a more important role in so-called tissue-like P systems
with channel-states, [33], which are constructs of the form

Π = (O, T,K,w1, . . . , wm, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
K is the alphabet of states (not necessarily disjoint of O), w1, . . . , wm are
strings over O representing the initial multisets of objects present in the cells of
the system (it is assumed that we have m cells, labeled with 1, 2, . . . ,m), E ⊆
O is the set of objects present in arbitrarily many copies in the environment,
syn ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m}, i 6= j} is the set of links among cells
(we call them synapses; 0 indicates the environment) such that for i, j ∈
{0, 1, . . . ,m} at most one of (i, j), (j, i) is present in syn, s(i,j) is the initial
state of the synapse (i, j) ∈ syn, R(i,j) is a finite set of rules of the form
(s, x/y, s′), for some s, s′ ∈ K and x, y ∈ O∗, associated with the synapse
(i, j) ∈ syn, and, finally, io ∈ {1, 2, . . . ,m} is the output cell.

We note the restriction that there is at most one synapse among two given
cells, and the synapse is given as an ordered pair (i, j) with which a state
from K is associated. The fact that the pair is ordered does not restrict the
communication between the two cells (or between a cell and the environment),
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because we work here in the general case of antiport rules, specifying simul-
taneous movements of objects in the two directions of a synapse.

A rule of the form (s, x/y, s′) ∈ R(i,j) is interpreted as an antiport rule
(i, x/y, j) as above, acting only if the synapse (i, j) has the state s; the ap-
plication of the rule means (1) moving the objects specified by x from cell i
(from the environment, if i = 0) to cell j, at the same time with the move
of the objects specified by y in the opposite direction, and (2) changing the
state of the synapse from s to s′.

The computation starts with the multisets specified by w1, . . . , wm in the
m cells; in each time unit, a rule is used on each synapse for which a rule
can be used (if no rule is applicable for a synapse, then no object passes over
it and its state remains unchanged). Therefore, the use of rules is sequential
at the level of each synapse, but it is parallel at the level of the system: all
synapses which can use a rule must do so (the system evolves synchronously).
The computation is successful if and only if it halts and the result of a halting
computation is the number of objects from T present in cell io in the halting
configuration (the objects from O−T are ignored when considering the result).
The set of all numbers computed in this way by the system Π is denoted by
N(Π). Of course, we can compute vectors, by considering the multiplicity of
objects from T present in cell io in the halting configuration.

A still more elaborated class of systems, called population P systems, were
investigated in a series of papers by F. Bernardini and M. Gheorghe (see, e.g.,
[10]) with motivations related to the dynamics of cells in skin-like tissues,
populations of bacteria, and colonies of ants. These systems are highly dy-
namical; not only the links between cells, corresponding to the channels from
the previous model with states assigned to the channels, can change during
the evolution of the system, but also the cells can change their names, can
disappear (get dissolved), and can divide, thus producing new cells; these new
cells inherit, in a well specified sense, links with the neighboring cells of the
parent cell. The generality of this model makes it rather attractive for appli-
cations in areas such as those mentioned above, related to tissues, populations
of bacteria, etc.

17 Neural-like P Systems

The next step in enlarging the model of tissue-like P systems is to consider
more complex cells, for instance, moving the states from the channels between
cells to the cells themselves – while still preserving the network of synapses.
This suggests the neural motivation of these attempts, aiming to capture
something from the intricate structure of neural networks of the way the
neurons are linked and cooperate in the human brain.

We do not recall the formal definition of a neural-like P system, but we
refer to [67] for details, and here we present only the general idea behind these
systems.
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We again use a population of cells (each one identified by its label) linked
by a specified set of synapses. This time, each cell has at every moment a
state from a given finite set of states, contents in the form of a multiset of
objects from a given alphabet of objects, and a set of rules for processing these
objects.

The rules are of the form sw → s′(x, here)(y, go)(z, out), where s, s′ are
states and w, x, y, z are multisets of objects; in state s, the cell consumes the
multiset w and produces the multisets x, y, z; the objects from multiset x
remain in the cell, those of multiset y have to be communicated to the cells
toward which there are synapses starting in the current cell; a multiset z, with
the indication out, is allowed to appear only in a special cell, designated as
the output cell, and for this cell the use of the previous rule entails sending
the objects of z to the environment.

The computation starts with all cells in specified initial states, with ini-
tially given contents, and proceeds by processing the multisets from all cells,
simultaneously, according to the local rules, redistributing the obtained ob-
jects along synapses and sending a result into the environment through the
output cell; a result is accepted only when the computation halts.

Because of the use of states, there are several possibilities for processing
the multisets of objects from each cell. In the minimal mode, a rule is chosen
and applied once to the current pair (state, multiset). In the parallel mode, a
rule is chosen, e.g., sw → s′w′, and used in the maximally parallel manner: the
multiset w is identified in the cell contents in the maximal manner, and the rule
is used for processing all these instances of w. Finally, in the maximal mode,
we apply in the maximally parallel manner all rules of the form sw → s′w′,
that is, with the same states s and s′ (note the difference with the parallel
mode, where in each step we choose a rule and we use only that rule as many
times as possible).

There are also three ways to move the objects between cells (of course,
we only move objects produced by rules in multisets with the indication go).
Assume that we have applied a rule sw → s′(x, here)(y, go) in a given cell i.
In the spread mode, the objects from y are nondeteterministically distributed
to all cells j such that (i, j) is a synapse of the system. In the one mode,
all the objects from y are sent to one cell j, provided that the synapse (i, j)
exists. Finally, we can also replicate the objects of y, and each object from y
is sent to all cells j such that (i, j) is an available synapse.

Note that the states ensure a powerful way to control the work of the
system, that the parallel and maximal modes are efficient ways to process the
multisets, and that the replicative mode of distributing the objects provides
the possibility of increasing exponentially the number of objects in linear time.
Altogether, these features make the neural-like P systems both very powerful
and very efficient computing devices. However, this class of P systems still
waits for a systematic investigation – maybe starting with questioning their
very definition, and changing this definition in such a way as to capture more
realistic brain-like features.
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18 Other Ways of Using a P System; P Automata

In all previous sections we have considered the various types of P systems as
generative devices: starting from an initial configuration, because of the non-
determinism of using the rules, we can proceed along various computations, at
the end of which we get a result; in total, all successful computations provide
a set of numbers, of vectors or numbers, or a language (set of strings), depend-
ing on the way the result of a computation is defined. This grammar oriented
approach is only one possibility, mathematically attractive and theoretically
important, but not useful from a practical point of view when dealing with
specific problems to be solved and specific functions to be computed. However,
a P system can also be used for computing functions and for solving problems
(in a standard algorithmic manner).

Actually, besides the generative approach, there are two other general
(related) ways of using a P system: in the accepting mode and in the transducer
mode. In both cases, an input is provided to the system in a way depending
on the type of systems at hand. For instance, in a symbol object P system,
besides the initial multisets present in the regions of the membrane structure,
we can introduce a multiset w0 in a specified region, adding the objects of
w0 to the objects present in that region. The computation proceeds, and if it
halts, then we say that the input is accepted (or recognized). In the transducer
mode, we have not only to halt, but also to collect an output from a specified
output region, internal to the system or the environment.

Now, an important distinction appears between systems which behave de-
terministically (at each moment at most one transition is possible, that is,
either the computation stops, or it continues in a unique mode) and those
which work in a nondeterministic way. Such a distinction does not make much
sense in the generative mode, especially if only halting computations provide
a result at the end: such a system can generate only a single result. In the
case of computing functions or solving problems (e.g., decidability problems),
the determinism is obligatory.

Again a distinction is in order: actually, we are not interested in the way the
system behaves, deterministically or nondeterministically, but in the unique-
ness and the reliability of the result. If, for instance, we ask whether or not
a propositional formula in conjunctive normal form is satisfiable or not, we
do not care how the result is obtained, but we want to make sure that it is
the right one. Whether or not the truth assignments were created as in the
example from Section 13, expanding the variables in a random order, is not
relevant; what is important is that after n steps we get the same configura-
tion. This brings to the stage the important notion of confluence. A system
is strongly confluent if, starting from the initial configuration and behaving
in a way which we do not care, it after a while reaches a configuration from
where the computation continues in a deterministic way. Because we are only
interested in the result of computations (e.g., in the answer, yes or no, to a
decidability problem), we can relax the previous condition, to a weak con-
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fluence property: regardless of how the system works, it always halts and all
halting computations provide the same result. These notions will be invoked
when discussing the efficiency of P systems, as in Section 20.

Let us consider here in some detail the accepting mode of using a P system.
Given, for instance, a transition P system Π, let us denote by Na(Π) the set
of all numbers accepted by Π in the following sense: we introduce an, for a
specified object a, into a specified region of Π, and we say that n is accepted if
and only if there is a computation of Π, starting from this augmented initial
configuration, which halts. In the case of systems taking objects from the
environment, such as the symport/antiport or the communicative ones [77],
we can consider that the system accepts/recognizes the sequence of objects
taken from the environment during a halting computation (if several objects
are brought into the system at the same time, then all their permutations
are accepted as substrings of the accepted string). Similar strategies can be
followed for all types of systems, tissue-like and neural-like included (but P
automata were first introduced in the symport/antiport case in [30]; see also
[32]).

The above set Na(Π) was defined in general, for nondeterministic systems,
but, clearly, in the accepting mode the determinism can be imposed (the
nondeterminism is moved to the environment, to the “user,” which provides an
input, unique, but nondeterministically chosen, from which the computation
starts). Note that the example of a P system with symport/antiport rules
from Section 11 works in the same manner for an accepting register machine
(a number is introduced in the first register and is accepted if and only if the
computation halts); in such a case, the add instructions can be deterministic,
that is, with labels l2, l3 identical (one simply writes l1 : (add(r), l2), with the
continuation unique), and for this case the P system itself is deterministic.

19 Universality

The initial goal of membrane computing was to define computability models
inspired from the cell biology, and indeed a large part of the investigations in
this area was devoted to producing computing devices and examining their
computing power, in comparison with the standard models in computability
theory, Turing machines and their restricted variants. As it turns out, most of
the classes of P systems considered are equal in power to Turing machines. In
a rigorous manner, we have to say that they are Turing complete (or compu-
tationally complete), but because the proofs are always constructive, starting
the constructions used in these proofs from universal Turing machines or from
equivalent devices, we obtain universal P systems (able to simulate any other
P system of the given type after introducing a “code” of the particular system
as an input in the universal one). That is why we speak about universality
results and not about computational completeness.
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All classes of systems considered above, whether cell-like, tissue-like, or
neural-like, with symbol objects or string objects, working in the generative
or the accepting modes, with certain combinations of features, are known to
be universal. The cell turns out to be a very powerful “computer,” both when
standing alone and in tissues.

In general, for P systems working with symbol objects, these universality
results are proved by simulating computing devices known to be universal, and
which either work with numbers or do not essentially use the positional in-
formation from strings. This is true/possible for register machines, matrix
grammars (in the binary normal form), programmed grammars, regularly
controlled grammars, and graph-controlled grammars (but not for arbitrary
Chomsky grammars and for Turing machines, which can be used only in the
case of string objects). The example from Section 11 illustrates a universality
proof for the case of P systems with symport/antiport rules (with rules of
sufficiently large weight; see below stronger results from this point of view).

We do not enter here into details other than specifying some notations
which are already standard in membrane computing and, after that, mention-
ing some universality results of particular interest.

As for notations, the family of sets N(Π) of numbers (we hence use the
symbol N) generated by P systems of a specified type (P ), working with sym-
bol objects (O), having at most m membranes, and using features/ingredients
from a given list is denoted by NOPm(list-of-features). If we compute sets of
vectors, we write PsOPm(. . .), with Ps coming from “Parikh set.” When
the systems work in the accepting mode, one writes NaOPm(. . .), and when
string objects are used, one replaces N with L (from “languages”) and O with
S (from “strings”), thus obtaining families LSPm(. . .). The case of tissue-
like systems is indicated by adding the letter t before P , thus obtaining
NOtPm(. . .), while for neural-like systems one uses instead the letter n. When
the number of membranes is not bounded, the subscript m is replaced by ∗,
and this is a general convention, used also for other parameters.

Now, the list of features can be taken from an endless pool: cooperative
rules are indicated by coo; catalytic rules are indicated by cat, noting that the
number of catalysts matters, and hence we use catr in order to indicate that
we use systems with at most r catalysts; bistable catalysts are indicated by
2cat (2catr, if at most r catalysts are used); mobile catalysts are indicated by
Mcat. When using a priority relation, we write pri. For the actions δ, τ we
write simply δ, τ . Membrane creation is represented by mcre; endocytosis and
exocytosis operations are indicated by endo, exo, respectively. In the case of
P systems with active membranes, one directly lists the types of rules used,
from (a) to (e), as defined and denoted in Section 13.

For systems with string objects, one write rew, repld, and spl for indicating
that one uses rewriting rules, replicated rewriting rules (with at most d copies
of each string produced by replication), and splicing rules, respectively.

In the case of (cell-like or tissue-like) systems using symport/antiport rules,
we have to specify the maximal weight of the used rules, and this is done by
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writing symp, antiq, meaning that symport rules of weight at most p and
antiport rules of weight at most q are allowed.

There are many other features, with notations of the same type (as
mnemonic as possible), which we do not recall here. Sometimes, when it is
important to show in the name of the discussed family that a specific feature
fe is not allowed, one writes nFe – for instance, one writes nPri for not using
priorities (note the capitalization of the initial name of the feature), nδ, etc.

Specific examples of families of numbers (we do not consider here sets of
vectors or languages, although, as we have said above, a lot of universality
results are known for all cases) appear in the few universality results which we
recall below. In these results, NRE denotes the family of Turing computable
sets of numbers (the notation comes from the fact that these numbers are the
length sets of recursively enumerable languages, those generated by Chomsky
type-0 grammars or by many types of regulated rewriting grammars and rec-
ognized by Turing machines). The family NRE is also the family of sets of
numbers generated/recognized by register machines. When dealing with vec-
tors of numbers, hence with the Parikh images of languages (or with the sets
of vectors generated/recognized by register machines), we write PsRE.

Here are some universality results (for the proofs, see the papers men-
tioned):

1. NRE = NOP1(cat2) [31].
2. NRE = NOP3(sym1, anti1) = NOP3(sym2, anti0) [4].
3. NRE = NOP3((a), (b), (c)) [54].
4. NRE = NSP3(repl2) [50].

In all these results, the number of membranes sufficient for obtaining the
universality is pretty small. Actually, in all cases when the universality holds
(and the code of a particular system is introduced in a universal system in
such a way that the membrane structure is not modified), the hierarchy on
the number of membranes collapses, because a number of membranes as large
as the degree of the universal system suffices.

Still, “the number of membranes matters,” as we read already in the title
of [43]: there are (sub-universal) classes of P systems for which the number
of membranes induces an infinite hierarchy of families of sets of numbers (see
also [44]).

20 Solving Computationally Hard Problems in
Polynomial Time

The computational power (the “competence”) is only one of the important
questions to be dealt with when defining a new computing model. The other
fundamental question concerns the computing efficiency, the resources used
for solving problems. In general, the research in natural computing is espe-
cially concerned with this issue. Because P systems are parallel computing
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devices, it is expected that they can solve hard problems in an efficient man-
ner, and this expectation is confirmed for systems provided with ways for
producing an exponential workspace in linear time.

We have discussed above three basic ways to construct such an exponen-
tial space in cell-like P systems, namely, membrane division (the separation
operation has the same effect, as do other operations which replicate partially
or totally the contents of a membrane), membrane creation (combined with
the creation of exponentially many objects), and string replication. Similar
possibilities are offered by cell division in tissue-like systems and by object
replication in neural-like systems. Also the possibility to use a pre-computed
exponential workspace, unstructured and non-active (e.g., with the regions
containing no object) was considered.

In all these cases polynomial or pseudo-polynomial solutions to NP-
complete problems were obtained. The first problem addressed in this context
was SAT [66] (the solution was improved in several respects in other subsequent
papers), but similar solutions are reported in the literature for the Hamilto-
nian Path and the Node Covering problems, the problem of inverting one-way
functions, the Subset-sum problem and the Knapsack problem (note that the
last two are numerical problems, where the answer is not of the yes/no type
as in decidability problems), and for several other problems. Details can be
found in [67, 72], as well as in the Web page of the domain [82].

Roughly speaking, the framework for dealing with complexity matters is
that of accepting P systems with input: a family of P systems of a given
type is constructed starting from a given problem, and an instance of the
problem is introduced as an input in such systems; working in a deterministic
mode (or a confluent mode: some nondeterminism is allowed, provided that
the branching converges after a while to a unique configuration, or, in the
case of weak confluence, all computations stop in a determined time and give
the same result) in a given time one of the answers yes/no is obtained in
the form of specific objects sent to the environment. The family of systems
should be constructed in a uniform mode (starting from the size of problem
instances) by a Turing machine working in polynomial time. A more relaxed
framework is that where a semi-uniform construction is allowed, carried out
in polynomial time by a Turing machine, but starting from the instance to
be solved (the condition to have a polynomial time construction ensures the
“honesty” of the construction: the solution to the problem cannot be found
during the construction phase).

This direction of research is very active at the present moment. More
and more problems are being considered, the membrane computing complex-
ity classes are being refined, characterizations of the P6=NP conjecture have
been obtained in this framework, and improvements are being looked for. An
important recent result concerns the fact that PSPACE was shown to be in-
cluded in PMCD, the family of problems which can be solved in polynomial
time by P systems with the possibility of dividing both elementary and non-
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elementary membranes. The PSPACE-complete problem used in this proof
was QSAT (see [77, 5] for details).

There also are many open problems in this area. We have mentioned already
the intriguing question about whether polynomial solutions to NP-complete
problems can be obtained through P systems with active membranes without
polarizations (and without label changing possibilities of other additional fea-
tures). In general, the borderline between efficiency (the possibility to solve
NP-complete problems in polynomial time) and non-efficiency is a challeng-
ing topic. Anyway, we know that membrane division cannot be avoided (“Mi-
lano theorem”: a P system without membrane division can be simulated by a
Turing machine with a polynomial slowdown; see [80, 81]).

21 Focusing on the Evolution

Computational power is of interest to theoretical computer science, and com-
putational efficiency is of interest to practical computer science, but neither
is of direct interest to biology. Actually, this last statement is not correct: if
a biologist is interested in simulating a cell – and this seems to be a major
concern of biology today (see [48, 42] and other sources) – then the generality
of the model (its comparison with the Turing machine and its restrictions) is
directly linked to the possibility of algorithmically solving questions about the
model. An example: is a given configuration reachable from the initial config-
uration? Imagine that the initial configuration represents a healthy cell and
we are interested in knowing whether a sickness state is ever reached. Then,
if both healthy and non-healthy configurations can be reached, the question
arises whether we can find the “bifurcation configurations,” and this is again
a reachability issue. The relevance of such a “purely theoretical” problem is
clear, and its answer depends directly on the generality (hence the power) of
the model. Then, of course, the time needed for answering the question is a
matter of computational complexity. So, both the power and the efficiency
are, indirectly, of interest also to biologists, so we (the biologists, too) should
be more careful when asserting that a given type of “theoretical” investigation
is not of interest to biology.

Still, the immediate concern of biological research is the evolution of bi-
ological systems, their life, whatever this means, and not the result of a
specific evolution. Alternatively stated, halting computations are of inter-
est to computer science, whereas of direct interest to biology is the com-
putation/evolution itself. Although membrane computing was not intended
initially to deal with such issues, a series of recent investigations indicate a
strong tendency toward considering P systems as dynamical systems. This
does not concern only the fact that, besides the rules for object evolution, a
more complete panoply of possibilities was imagined for making the membrane
structure also evolve, with specific developments in the case of tissue-like and
population P systems, where also the links between cells are evolving; but this
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concerns especially the formulation of questions which are typical for dynam-
ical systems study. Trajectories, periodicity and pseudo-periodicity, stability,
attractors, basins, oscillations, and many other concepts were brought in the
framework of membrane computing – and the enterprise is not trivial, as these
concepts were initially introduced in areas handled by means of continuous
mathematics tools (mainly differential equations). A real program of defining
discrete dynamical systems, with direct application to the dynamics of P sys-
tems, was started by V. Manca and his collaborators; we refer to Chapter 3
for details.

22 Recent Developments

Of course, the specification “recent” is risky, as it can soon become obsolete,
but still we want to mention here some directions of research and some re-
sults which were not presented before – after repeating the fact that topics
such as complexity classes and polynomial solutions to hard problems, dy-
namical systems approaches, and population P systems (in general, systems
dealing with populations of cells, as in tissue-like or neural-like systems) are
of strong current interest which will probably lead to significant theoretical
and practical results. To these trends we can add another general and yet not
very structured topic: using non-crisp mathematics, handling uncertainty by
means of probabilistic, fuzzy set, and rough set theories.

However, we want here to also point out a few more precise topics.
One of them concerns the role of time in P systems. The synchronization

and the existence of a global clock are too strong assumptions (from a bio-
logical point of view). What about P systems where there exist no internal
clocks and all rules have different times to be applied? This can mean both
that the duration needed by a rule to be applied can differ from the duration
of another rule and the extreme possibility that the duration is not known.
In the first case, we can have a timing function assigning durations to rules;
in the second case even such information is missing. How does the power of
a system depend on the timing function? Are there time-free systems, which
generate the same set of numbers regardless of what time function associates
durations with its rules? Such questions are addressed in a series of papers by
M. Cavaliere and D. Sburlan; see, e.g., [22, 23].

Another powerful idea explored by M. Cavaliere and his collaborators is
that of coupling a simple bio-inspired system, Sys, such as a P system without
large computing power, with an observer Obs, a finite state machine which
analyzes the configurations of the system Sys through the evolutions; from
each configuration either a symbol or nothing (that is, the “result” of that
configuration is the empty string λ) is produced; in a stronger variant, the
observer can also reject the configuration and hence the system evolution,
trashing it. The couple (Sys,Obs), for various simple systems and multiset
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processing finite automata, proved to be a very powerful computing device,
universal even for very weak systems Sys. Details can be found in [19, 20].

An idea recently explored is that of trying to bound the number of objects
used in a P system, and still computing all Turing computable numbers. The
question can be seen as “orthogonal” to the usual questions concerning the
number of membranes and the size of rules, since, intuitively, one of these
parameters should be left free in order to codify and handle an arbitrary
amount of information by using a limited number of objects. The first results
of this type were given in [69] and they are surprising: in formal terms, we
have NRE = NOP4(obj3, sym∗, anti∗) (P systems with four membranes and
symport and antiport rules of arbitrary weight are universal even when using
only three objects). In turn, two objects (but without a bound on the number
of membranes) are sufficient in order to generate all sets of vectors computed
by so-called (see [36]) partially blind counter machines (for sets of numbers the
result is not so interesting, because partially blind counter machines accept
only semilinear sets of numbers, while the sets of vectors they accept can be
non-semilinear).

Other interesting topics recently investigated which we only list here con-
cern the reversibility of computations in P systems [52], energy accounting
(associating quanta of energy to objects or to rules handled during the com-
putation) [35, 34, 51], relations with grammar systems and with colonies [68],
descriptional complexity, and non-discrete multisets [61, 27].

We close this section by mentioning the notion of Sevilla carpet introduced
in [25], which proposes a way to describe the time-and-space complexity of
a computation in a P system by considering the two-dimensional table of all
rules used in each time unit of a computation. This corresponds to the Szilard
language from language theory, with the complication now that we use several
rules at the same step, and each rule is used several times. Considering all
the information concerning the rules, we can get a global evaluation of the
complexity of a computation, as illustrated, for instance, in [75] and [37].

23 Closing Remarks

The present chapter should be seen as a general overview of membrane com-
puting, with the choice of topics intended to be as pertinent as possible, but,
of course, not completely free of a subjective bias. The reader interested in
further technical details, formal definitions, proofs, research topics and open
problems, or details concerning the applications (and the software behind
them) is advised to consult the relevant chapters of the book, as well as the
comprehensive web page from http://psystems.disco.unimib.it. A com-
plete bibliography of membrane computing can be found there, with many
papers available for downloading (in particular, one can find there the pro-
ceedings volumes of the yearly Workshops on Membrane Computing, as well
as of the yearly Brainstorming Weeks on Membrane Computing).
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Summary. The activity of mechanosensitive channels of large conductance (MscL

for short) in cellular membranes is modeled within the framework of P systems.

These channels are gated by changes in the pressure exerted against the membrane,

which may be due to natural environmental conditions (e.g., rain falling) or to a

suction applied by artificial patch clamping. In correspondence to these distinct situ-

ations, we present two models for the description of MscL activation and functioning.

We present simulations in silico of one model and show the emergent behavior of

fundamental quantitites. Finally, we discuss several topics for further extensions and

development of these models.

1 Introduction

The aim of this work is to define possible models for simulating the activity of
a particular kind of transmembrane protein channel present in bacterial cells
by using the framework of P systems.

?
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It should be emphasized that membrane systems were not initially in-
tended to be a model of the cell; instead, their purpose was to investigate
some computational features which can be abstracted from the cellular biol-
ogy. We stress the fact that the interest is now focused only on the modeling
power of P systems; hence we will not address the analysis of theoretical
computations. For this aspect, the interested reader is referred to [37].

Several other scientists from different disciplines have recently researched
biological simulators and theoretical models. For instance, the E-CELL project
[24, 45, 46] was launched in 1996 with the aim of modeling and simulating
intracellular processes, such as metabolic pathways, protein synthesis, and
membrane transport, and to predict the dynamic behavior of living cells.
Another promising software environment is Virtual Cell [29, 39], which enables
the construction of compartmental models (with a topological arrangement of
compartments and membranes, the molecules inside each compartment, and
the reactions between these molecules). For the generation of simulations,
both softwares are based on the numerical integration of sets of differential
equations.

The approach we propose with this work is totally different, since in our
opinion discrete mathematics may be more appropriate than continuous math-
ematics for describing noncontinuous molecular events (such as channels open-
ing and closure), as already suggested in [1]. This is linked to the intrinsic
power and suitability of P systems to elaborate models of specific biological
processes, since in any P system one finds a compartmentalized membrane
structure, similar to the architecture of the cell, the transformation of ele-
ments into different ones and their communication through membranes,highly
parallelized processing, and the possibility of adding useful features such as
probabilities, promoters, inhibitors, and many others.

It is natural to ask whether the introduction of (discrete) mathematics into
biology, as exemplified by the emergence of membrane computing and its cross
breeding with biology, could be as important and fruitful for biology as the
introduction of instruments and concepts from physics and chemistry since
the 19th century. This permanent import flourished into molecular biology.
As for the use of mathematics, the situation started to significantly change
in the second half of the 20th century with the seminal work of mathemati-
cians who beneficially explored different domains of biology. This work is also
an invitation for comments and feedback, as well as for criticism, from both
mathematicians and biologists (especially those working with mechanosensi-
tive channels in bacteria), with the aim of benefiting both domains.

Our attempt in using the framework of P systems for modeling cellular
structures consists of the definition of two minimal models for the activity
of mechanosensitive channels (see also [2, 6]); hence we will not describe any
chemical process occurring inside the bacterium. Mechanosensitive channels
are protein-based channels gated by mechanical forces; in this chapter, we
focus our analysis only on the mechanosensitive channel of large conductance
(MscL for short). In Gram-positive and Gram-negative bacteria, MscL is lo-
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cated in the cell membrane. This location in bacteria can be correlated to its
physiological function, the protection against severe osmotic downshifts. The
major role of these channels under osmotic downshift is to allow the rapid exit
of different chemicals, and hence the sudden decrease of the osmotic pressure
inside the cell. This event is fundamental for the bacterial cell because, when
the difference between osmotic pressure inside and outside the cell is too large,
the integrity of the cell can be damaged by disruption of the cell wall and the
plasma membrane, followed by cell death [9, 30, 41].

With respect to osmotic pressure, we will focus only on the hypotonic shock
(osmotic downshift) which is a decrease in the concentration (osmolarity, more
precisely) of the extracellular environment [48]. This is an event that happens
both in laboratory cultures (when the scientist is adding pure water to the
growing medium of a given cell culture) and in natural media when, e.g., a
rainfall dilutes a rather small pond.

The large amount of knowledge accumulated so far about MscL opens the
possibility of defining P models of their biological dynamics. The availability
of data ranging from molecular structure of the protein channel to its func-
tioning under different conditions (cells of wild type or mutant type, addition
of substances which modify the response of channel opening) enables the de-
sign of mathematical models of a realistic type (that is to say models that fit
the biological data obtained by laboratory experiments, and vice versa).

We define two distinct models, corresponding to (in vitro) patch clamp-
ing experiments and (in vivo) hypotonic shocks. These systems consist of
some basic components: an environment, a region and a membrane tension,
which naturally correspond to essential aspects of MscL activity. We intro-
duce probabilities associated with evolution rules in order to achieve a closer
resemblance to biological reality. Moreover, we define evolution rules accord-
ing to different environmental events (a suction applied to a patch membrane
or water addition). In both models, objects are never modified by evolution
rules, instead they are only exchanged between the internal region and the
environment. In addition, by using different target indications, we distinguish
between the direct passage of water through the cellular membrane (which
happens by osmosis) and the different passage of chemicals which, in con-
trast, need the opening of mechanically gated channels.

After the definition of the models, we present the simulation environment
which has been used to produce simulations in silico of an in vitro P model
and obtain predictions about observable quantities that could be used to test
its soundness. We show the emergent behavior of bio-physical quantities (not
explicitly programmed in the simulations) which appear to be in line with the
observed biological phenomena.

The models we present could be enlarged to also include other processes
intervening during osmotic shocks (see Section 9.4), but for the moment we
present only the formal simulation of the activity of MscL, and we base our
investigation on biological data and results obtained from E. coli. However,
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the models we introduce are general enough to cover distinct conditions for
the functioning of MscL in other prokaryotes.

This work is a largely modified and extended version of [6]. In Section
2 we report the biological notions concerning MscL in bacteria and the way
they are gated; this data will be used in the subsequent sections as the basis
for the definition of P models. In Section 3 we give a few basic notions and
notations about P systems, and we define the membrane system elements
which will be used in the sequel. In Section 4 and 5 we present the two
models mentioned above. In Section 6 we share some notes about in silico
simulations of the in vitro model; we describe the software environment used
and show some results obtained, such as the emergent behavior over time of
membrane tension, conductance, and the current of channels. In Section 7 we
summarize some general properties of the models and we describe the living
biological conditions of other prokaryotes, which could be easily modeled by P
systems. In Section 8 we suggest some possible behaviors of mechanosensitive
channels during subsequent activation cycles. Finally, in Section 9 we focus
on some final remarks and future extensions, in particular the analysis of the
relations between in vivo and in vitro models, the localization of multiple
occurrences of MscL upon a patch membrane, and the possibility of including
in the models the effect of inhibitor or activator substances.

2 Mechanosensitive Channels in E. Coli

Mechanosensitive channels (Msc for short), discovered in 1984 in animal cells,
are protein-based channels gated by mechanical forces. In the last decade the
study of Msc in Gram-negative and Gram-positive bacteria has significantly
increased [43, 41, 21]. The first cloned and reconstituted Msc [9] is the one of
large conductance (MscL) from the bacterium Escherichia coli. Mechanosen-
sitive channels with small (MscS) and mini (MscM) conductances also exist
in bacteria [32, 41]; the three types of Msc differ with respect to changes in
the conductivity of the membrane when they are opening [41], as well as in
the pressure gradient across the patch membrane they need to activate.

In Gram-positive and Gram-negative bacteria, MscL is located in the cell
membrane. This location in bacteria can be correlated to its physiological
function, the protection against severe osmotic downshifts. The major role of
Msc under osmotic downshift is to allow the rapid exit of different chemicals
(ions and very small molecules), and hence the sudden decrease of the osmotic
pressure inside the cell. Thus, by the opening of the Msc the osmotic pressure
inside the cell approaches the osmotic values of the extracellular medium. This
event is fundamental for a bacterial cell because, when the difference between
osmotic pressure inside the cell and osmotic pressure outside the cell (the so-
called turgor pressure) is too large, the integrity of the cell can be damaged
by the disruption of the cell wall and the plasma membrane, followed by cell
death [9, 30, 41]. It is important to realize that the turgor pressure provides
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the force that expands the cell wall, and it is necessary for the growth of the
cell wall and for cell division; that is why cells have developed mechanisms
by which the turgor pressure is maintained relatively constant (see reviews
[48, 21]).

Under steady state conditions, the retaining force of the peptidoglycan
wall in bacteria balances the cell turgor, which for E. coli is about 4 atm.
During hypotonic shock, water will rapidly enter the cell to balance the upset
equilibrium, thus increasing the turgor pressure. In the absence of the mech-
anisms to reduce turgor, an osmotic shift equivalent, e.g., to 0.3M salt would
cause the turgor pressure of E. coli to rise by about 11 atm. Cell integrity will
be retained as long as the elastic limit of the cell wall and cell membrane is
not reached. The proposed hypothesis is that damage to the cell wall and cell
membrane is avoided by rapid activation of the mechanosensitive channels.
The rapid release of solutes decreases the osmotic potential of the cytoplasm,
thus decreasing the driving force for water entry.

In patch clamping experiments, MscL can be activated by pressure gradi-
ents across the patches of bacterial spheroplasts (obtained from bacterial cells
by the chemical elimination of the cell wall, and also of the external mem-
brane in case of Gram-negative bacteria); purified MscL reconstituted into
phospholipid liposomes have produced similar currents. This indicates that
MscL can be gated directly by tension transmitted via the lipid bilayer alone
[44]. Although these results implicate Msc in bacterial osmoregulation, what
was lacking was a bacterial phenotype that would support such a role in vivo
[21]. Indeed, Blount et al. [8] identified such a phenotype by its inability to
grow in media with normal concentration of nutrients. They demonstrated
the crucial role of MscL in E. coli in the adaptation to large osmotic down-
shift, and suggested that if the normally tight regulation of MscL gating is
disrupted, then cell growth can be severely inhibited. Patch clamp studies in
native bacterial membrane substantiate the hypothesis that the mutant chan-
nel they obtained is more sensitive to mechanical stress than the native MscL
channel. This is why during an hypotonic shock more cytoplasm potassium
ions are released from cells expressing the mutant than from the cells express-
ing the wild type of MscL. This was the first time in vivo measurements could
be correlated with in vitro measurements. For a discussion about the relations
between in vivo and in vitro aspects, see Section 9.1.

2.1 Structure of MscL in E. Coli

In this section we report data about MscL in E. coli, obtained by patch clamp-
ing experiments. The functioning of MscL deduced by means of these data will
later be used to define two models which we claim to be valid also for describ-
ing the activity of MscL in different prokaryotes.

The MscL protein comprises 136 amino acid residues and its molecular
mass is 15 Kda. The secondary structure includes two alpha helical trans-
membrane domains (M1 and M2) connected by a periplasmic loop that can be
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divided in two segments S1 and S2. Both the N terminus and the C terminus
(by convention they represent the beginning and the end of the amino acid
chain, respectively) of MscL are located within the cytoplasm (see [21]). In
lipid bilayers MscL protein forms homopentameric or homohexameric channels
(for more discussions about the dispute concerning the number of molecules
of MscL protein self assembled in artificial membranes see [21, 42]). In this
work, we assume a homopentameric structure for the channels, though the
models given in next sections can be easily transformed to describe any other
channel structure.

According to a model proposed by Sukharev et al. [42, 44], when the MscL
is subject to a mechanical stretch, it experiences an increase in the membrane
tension, which causes its progression from the initial closed conformation (C)
to an expanded (but still closed) conformation (CE). Then, the first subcon-
ducting open state (SO1) occurs when one section of the homopentameric
structure breaks away. Then, the second subconducting open state (SO2) oc-
curs when another section of the homopentameric structure breaks away. The
remaining subunits disrupt quickly one by one, thus leading to the fully open
state (O), which shows short and intermittent subconductances when indi-
vidual sections of the gate partly occlude the pore. In these conformations,
the channel is open but the diameter of the pore can be different, in a range
(0, D], where D corresponds to the diameter when the channel is fully open.
The channel outer diameter increases primarily during the transition from
the closed to the first subconducting conformation (in the full open state the
pore outer diameter is 6 nm and inner diameter is 3.6 nm). The transitions
among the low subconducting states and the fully open state are relatively
independent of tension, which means that the major increase in conductance
does not involve substantial changes in the outer dimension of the channel.

The occurrence of multiple conducting states having different pore inner
diameters and different conductivities are intensively studied by biologists,
and this is the reason why we will consider these multiple functional substates
and their flickering among each other.

We list the conformations and the relative notations which will be used
(see Figure 1, which is based on a model proposed in [42]):

• the closed conformation, denoted by C;
• the expanded closed conformation, denoted by CE;
• the subconducting open conformations, denoted by SOk, where k subunits

(out of five) are open, for k = 1, 2, 3, 4;
• the fully open conformation, denoted by O (where all five subunits are

open).

By using the values reported in [42] we have derived the following conduc-
tivity values of the subconducting and open states:

• the conductivity of the state SO1 is 0.25 · 3.5 nS, that is, 0.875 nS;
• the conductivity of the state SO2 is 0.56 · 3.5 nS, that is, 1.96 nS;
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Fig. 1. Activity of mechanosensitive channels: from the closed conformation to the

fully open conformation.

• the conductivity of the state SO3 is 0.74 · 3.5 nS, that is, 2.59 nS;
• the conductivity of the state SO4 is 0.89 · 3.5 nS, that is, 3.115 nS;
• the conductivity of the state O is 3.5 nS.

3 P Systems Prerequisites

In this section we recall a few notions and notations from Membrane Com-
puting; for further details and results we refer you to [37].

3.1 Basic Notions and Notations

An alphabet is a finite (nonempty) set of symbols. Given an alphabet V , we
denote by V ∗ the set of all possible strings over V , including the empty string,
which is denoted by λ. By V + = V ∗ \ {λ} we denote the set of nonempty
strings over V . The length of a string x ∈ V ∗, that is, the number of symbols
appearing in x, is denoted by |x|. For each symbol a ∈ V , |x|a denotes the
number of occurrences of a in x. The set of symbols from V occurring in a
string x is denoted by alph(x).

A multiset over a set V is a map M : V → N, where M(a) denotes the
multiplicity of the symbol a ∈ V and N is the set of natural numbers. If the
set V is finite, e.g., V = {a1, . . . , an}, then the multiset M can be explicitly

represented by the string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n , with M(ai) 6= 0 for all
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i = 1, . . . , n, and by all its possible permutations (this means that the order
in which symbols appear in the string is not relevant).

The notion of multiset is widely used in P systems to describe the objects
present in the membrane structure. We recall that a membrane structure con-
sists of a set of membranes hierarchically embedded in a unique membrane
called the skin membrane. Each membrane can be associated with the mem-
brane surrounding any cellular organelle; for instance, the skin membrane
corresponds to the plasmatic membrane. Formally, the membrane structure is
identified with a string of correctly matching square parentheses placed in a
unique pair of matching parentheses; each pair of matching parentheses cor-
responds to a membrane. Usually, a numerical label is associated with each
membrane. For instance, the string [1 [2 ]2 ]1 denotes a membrane structure
consisting of two membranes labeled with numbers 1 and 2, with membrane
2 placed inside membrane 1. Each membrane identifies a region, delimited by
it and the membranes (if any) immediately inside it.

As inside a cell (in any organelle) we can find biochemical substances, in
a membrane structure we consider the presence of some objects, which can be
multisets of symbols or strings over a specified finite set V . These objects are
modified by means of evolution rules, which are multiset rewriting rules with
target indications associated with the newly introduced objects, of the form
tar ∈ {here, out, in}. For instance, the rule a→ (b, out) means that the object
a appearing on the left hand side of the rule is rewritten (transformed) into
a different symbol b appearing on the right hand side of the rule, and b exits
the membrane where it was initially placed. Hence, the rule specifies both
the transformation and the transportation processes. Specifically, the target
indication determines the region where the object will be communicated after
the application of the rule: if tar = here, then the object remains in the same
region; if tar = out, then the object exits from the region where it was placed;
if tar = in, then the object nondeterministically enters one of the membranes
immediately inside the region where the rule is applied, if any inner region
exists (otherwise the rule cannot be applied).

At any given time, the membrane structure together with all multisets of
objects associated with the regions represent the configuration of the system
at that time. A transition from one configuration to another is obtained by
letting all objects in all regions evolve in a nondeterministically and maximally
parallel way; this means that all objects which can be transformed and com-
municated must evolve, with a simultaneous process involving all membranes
and all objects inside the membranes at the same time.

3.2 P Systems and Mechanosensitive Channels

In the following discussion, we will call the model corresponding to patch
clamping in vitro, and the model where the bacterium is suddenly put in a
more diluted environment (in both events of natural or artificial addition of
water) in vivo.
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For the simulation of an activation cycle of MscL we will need to define
some basic components of P systems (the membrane structure, multisets of
objects, evolution rules) and ad hoc additional components, parameters, and
particular evolution rules (depending on patch pressure in the in vitro model
and on water addition in the in vivo model).

As said before, MscL act as transmembrane mechanoelectrical switches,
opening in response to lipid bilayer stretches and deformations [30] and con-
verting mechanical stresses of the membrane into gating transitions. The chan-
nel open probability, as well as the dynamic of closed-to-open transition, are
functions of the membrane tension (see [32, 41]), an essential parameter that
will be considered in both models. In particular, in the following P systems
the tension will be described by means of multiple (variable) labels attached
to the membrane. Hence, the evolution rules will not only intervene in the
transformation and communication of objects, but also in the modification
of the label, which is to be interpreted as a key descriptor of the channel
status. This is a new interpretation of the membrane label, which is now a
fundamental component of the system used to describe a biological significant
counterpart (the status of the channel, in this case), and not just an identifier
of a couple of square parentheses.

As for the membrane structure to be used, the difference between Gram-
positive and Gram-negative bacteria should be pointed out: they are both
enclosed by a cell wall and a cell membrane (where MscL are embedded), but
in Gram-negative bacteria there is also an external membrane, delimiting a
space between itself and the cell membrane (see [1] and the references herein).
Since MscL channels are placed in the cell membrane appearing in both kinds
of bacteria, we will always consider a membrane structure consisting of a single
membrane.

For the sake of completeness, we will also give a description of the solu-
tions inside and outside the membrane, that is we will consider an external
environment (Env) and an inner region (Reg), which can be briefly defined
as follows:

1. the environment is made of solutes (symbols from a given alphabet Vchem)
and water molecules (each denoted by a special symbol w not appearing
in Vchem);

2. the internal region consists of objects over the same alphabet of the envi-
ronment and, for simplicity, we assume that no other processes take place
inside it.

In what follows, the semi-bracket notation introduced in [5, 4] (with the
new concept that rules are locally extensible to the regions around a specified
boundary, that is, they are “able to see” around the membrane boundary) will
be used to denote the membrane, here labeled with the tension parameter t,
which separates the environment and the internal region:

Env [t Reg.
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We stress the fact that in the in vitro experiments the activation of MscL
is determined by the negative pressure artificially applied to the membrane;
hence the external and internal solutions do not play any role in the opening
mechanism. As we will see later, these two components will play a major role
in the in vivo model, so they will be defined with more details.

Finally, we give the definition of an activation cycle of MscL, which will
be later described in terms of P system models.

Definition 1. A cycle is the transition of the MscL from the initial closed
state to the open state, passing through the (closed) expanded and subcon-
ducting (open) states, and returning finally to the closed state.

4 A P Model for In Vitro Activation of MscL

To understand the definition of the P model for in vitro activation of MscL,
some preliminary observations about membrane tension and patch pressure
should be made. The reader is referred to [21] for further details.

The activation of MscL by the negative pressure (i.e., suction) applied to
the patch clamp pipette can be described by a Boltzmann distribution function
for the channel open probability, which is shown to increase as the suction
increases. The applied suction can be also related to the membrane tension (in
Section 9.2 we show how the linear dependence of membrane tension to patch
pressure can be derived by making plausible discretizations). These notions
are also related to the possibility of using the following model to predict the
localization of the channels upon the small piece of membrane analyzed during
patch clamping experiments (for a detailed explanation see Section 9.2).

In the in vitro P model, one fundamental component is a variable mem-
brane parameter called tension, which is formally represented as the labeling
of the membrane structure. The parameter tension may assume real posi-
tive values in the finite set Tension = {tC , tCE , tSO1, tSO2, tSO3, tSO4, tO, tL}.
Each element in this set is used to denote, as follows, the particular value (or
the interval of values) of membrane tension and of the corresponding channel
status:

• tC corresponds to the steady state value of the membrane tension (the
setting where no patch pressure is applied), as well as to the value at the
end of the cycle;

• tCE corresponds to the value that the membrane reaches during the phase
of MscL expansion, while the channel remains still closed;

• tSO1, tSO2, tSO3, tSO4 correspond to the values of the membrane tension
when the channel is partly open and still partly occluded;

• tO corresponds to the value of the membrane tension when the MscL is
fully open;
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• tL corresponds to the value of the membrane tension near or equal to the
lytic threshold; whenever reached, the membrane will break and the cell
will die.

Transitions among tension values are due to the changes in the pressure
applied to the patch membrane (see Figure 2), according to the linear depen-
dence of membrane tension to patch pressure.
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Fig. 2. Membrane tension transitions for in vitro model.

According to data collected from in vitro experiments on E. coli [44],
we might consider the following real values (or intervals of values) for the
membrane tension (measured in dyne/cm):
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(a) tC ∈ [0, 10) when no suction is applied to the patch membrane;
(b) tCE = 10 when a suction is applied to the patch membrane; the membrane

tension increases and MscL is in the closed expanded substate;
(c) tSO1, tSO2, tSO3, tSO4 ∈ (10, 13) when the channel is partly open (solutes

and water pass from the internal region to the external medium) and
shows a flickering through subconducting states;

(d) tO = 13 when MscL is fully open; chemicals and water continue to pass
from the internal region to the external medium;

(e) tL ≥ 14 when the applied suction is high enough to cause the membrane
lysis.

In order to describe the transitions among membrane tension values, we
need to define new types of evolution rules for P systems, which account for
both the applied pressure and the current membrane label (that is, the current
conformation of the channel).

Definition 2. An in vitro probabilistic environmental rule is denoted as

〈p, apply〉[t−→prob [t′

for some p ∈ R, t, t′ ∈ Tension, prob ∈ [0, 1] ⊂ R. It describes a (possible)
change in the membrane tension value due to the external application of the
pressure parameter p, which can happen at any time in the environment and
cannot be controlled by any component of the system. The rule is applied
according to the associated probability value prob.

Environmental rules can be naturally coupled with the communication of
objects. For the in vitro model, we use only target indications of type out
associated with a multiset x ⊆MReg contained in the region, namely (x, out),
which corresponds to the efflux of chemicals and water from the region when
the channel opens.

We are now ready to list the set R of evolution rules for the in vitro
model, that is, the rules which describe the activity of MscL during patch
clamping experiments. The measure unit for the pressure parameter is mmHg
(millimeters of mercury); the size of the communicated multiset x corresponds
to the real values of conductance reported in Section 2.1.

1. [tC
−→prob=1 [tC

(no suction applied),
2. 〈p, apply〉[tC

−→prob=0.01 [tCE
, for some p ' 40,

3. 〈p, apply〉[tC
−→prob=0.99 [tC

, for some p ' 40,
4. 〈p, apply〉[tC

−→prob=0.8 [tCE
, for some 0 < p ≤ 40,

5. 〈p, apply〉[tC
−→prob=0.2 [tC

, for some 0 < p ≤ 40,
6. 〈p, apply〉[tCE

−→prob=0.05 [tC
, for some p ∼= 40,

7. 〈p, apply〉[tCE
−→prob=0.5 [tSO1

, for some p ∼= 40,
8. 〈p, apply〉[tCE

−→prob=0.20 [tSO2
, for some p ∼= 40,

9. 〈p, apply〉[tCE
−→prob=0.15 [tSO3

, for some p ∼= 40,
10. 〈p, apply〉[tCE

−→prob=0.07 [tSO4
, for some p ∼= 40,
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11. 〈p, apply〉[tCE
−→prob=0.03 [tO

, for some p ∼= 40,
12. 〈p, apply〉[tSO1

(x, out) −→prob=0.05 [tCE
, for some p ∼= 40, x ⊆MReg,

13. 〈p, apply〉[tSO1
(x, out) −→prob=0.2 [tSO1

, for some p ∼= 40, x ⊆MReg,
14. 〈p, apply〉[tSO1

(x, out) −→prob=0.5 [tSO2
, for some p ∼= 40, x ⊆MReg,

15. 〈p, apply〉[tSO1
(x, out) −→prob=0.15 [tSO3

, for some p ∼= 40, x ⊆MReg,
16. 〈p, apply〉[tSO1

(x, out) −→prob=0.07 [tSO4
, for some p ∼= 40, x ⊆MReg,

17. 〈p, apply〉[tSO1
(x, out) −→prob=0.03 [tO

, for some p ∼= 40, x ⊆MReg,
18. 〈p, apply〉[tSO2

(x, out) −→prob=0.2 [tSO1
, for some p ∼= 40, x ⊆MReg,

19. 〈p, apply〉[tSO2
(x, out) −→prob=0.15 [tSO2

, for some p ∼= 40, x ⊆MReg,
20. 〈p, apply〉[tSO2

(x, out) −→prob=0.5 [tSO3
, for some p ∼= 40, x ⊆MReg,

21. 〈p, apply〉[tSO2
(x, out) −→prob=0.1 [tSO4

, for some p ∼= 40, x ⊆MReg,
22. 〈p, apply〉[tSO2

(x, out) −→prob=0.05 [tO
, for some p ∼= 40, x ⊆MReg,

23. 〈p, apply〉[tSO3
(x, out) −→prob=0.02 [tSO1

, for some p ∼= 40, x ⊆MReg,
24. 〈p, apply〉[tSO3

(x, out) −→prob=0.3 [tSO2
, for some p ∼= 40, x ⊆MReg,

25. 〈p, apply〉[tSO3
(x, out) −→prob=0.08 [tSO3

, for some p ∼= 40, x ⊆MReg,
26. 〈p, apply〉[tSO3

(x, out) −→prob=0.5 [tSO4
, for some p ∼= 40, x ⊆MReg,

27. 〈p, apply〉[tSO3
(x, out) −→prob=0.1 [tO

, for some p ∼= 40, x ⊆MReg,
28. 〈p, apply〉[tSO4

(x, out) −→prob=0.02 [tSO1
, for some p ∼= 40, x ⊆MReg,

29. 〈p, apply〉[tSO4
(x, out) −→prob=0.08 [tSO2

, for some p ∼= 40, x ⊆MReg,
30. 〈p, apply〉[tSO4

(x, out) −→prob=0.3 [tSO3
, for some p ∼= 40, x ⊆MReg,

31. 〈p, apply〉[tSO4
(x, out) −→prob=0.1 [tSO4

, for some p ∼= 40, x ⊆MReg,
32. 〈p, apply〉[tSO4

(x, out) −→prob=0.5 [tO
, for some p ∼= 40, x ⊆MReg,

33. 〈p, apply〉[tO
(x, out) −→prob=0.55 [tC

, for some p ∼= 40, x ⊆MReg,
34. 〈p, apply〉[tO

(x, out) −→prob=0.15 [tO
, for some p ∼= 40, x ⊆MReg,

35. 〈p, apply〉[tO
(x, out) −→prob=0.3 [tSO4

, for some p ∼= 40, x ⊆MReg,
36. [tO

(x, out) −→prob=1 [tC
(no more suction), for some x ⊆MReg,

37. 〈p, apply〉[tO
(x, out) −→prob=P(O→L)

[tL
, for some p > 40, x ⊆MReg,

38. 〈p, apply〉[tO
(x, out) −→prob=1−P(O→L)

[tO
, for some p > 40, x ⊆MReg,

39. 〈p, apply〉[tC
−→prob=0.99 [tL

, for some pÀ 40,
40. 〈p, apply〉[tC

−→prob=0.01 [tCE
, for some pÀ 40,

41. 〈p, apply〉[tCE
−→prob=0.9 [tL

, for some pÀ 40,
42. 〈p, apply〉[tCE

−→prob=0.1 [tSO1
, for some pÀ 40,

43. 〈p, apply〉[tL
−→prob=1 †, for all p ≥ 0.

Note that in the set R we can distinguish fourteen subsets of rules, each cor-
responding to the transitions from a class of values of the membrane tension,
for a fixed value of the applied suction. The rules belonging to the same subset
have associated probability values summing to 1. For instance, the subset of
rules 6→11 describes the transitions from the closed expanded conformation
(value tCE of the membrane tension) of the channel to other conformations
(values tC , tSO1, tSO2, tSO3, tSO4, tO of the membrane tension), in response to
an applied suction of 40 mmHg. The sum of all associated probabilities is
0.05 + 0.5 + 0.20 + 0.15 + 0.07 + 0.03 = 1, where each single value denotes
which of the other conformations is more likely to be reached, according to
the applied suction. Here we stress the fact that we have chosen the values
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for the associated probabilities so that they have a close resemblance to the
biological phenomenon of MscL activity. Moreover, probability values have
been adjusted after a first analysis of in silico simulation results (see Section
6) in order to obtain a flickering behavior among subconducting states similar
to the one recorded during patch clamping experiments.

The simulation of a cycle proceeds in the following way. Initially, the sys-
tem is in the configuration MEnv [tC

MReg, which corresponds to the situation
where the MscL is closed, the membrane tension is equal to tC , and no suction
is applied to the patch membrane (rule 1). The initial multisets in Env and in
Reg are identical; they are not subject to any modification or communication
(so, it is not necessary to indicate them in the rule). At any time, a suction
can be artificially applied to the membrane: if the pressure is too high, i.e.,
p À 40 mmHg, then with the highest associated probability the membrane
tension tC reaches its lytic value tL (rule 39) and, with the application of rule
43, we describe the membrane disruption (hence we substitute the semibracket
symbol for the membrane with the new symbol †, which also stands for the
death of the cell). In this case, the external and internal multisets are mixed
in the environment. We also consider another possible transition (rule 40),
which has very low associated probability, according to an applied suction of
pÀ 40 mmHg, namely the one which causes the MscL to enter its expanded
(but still closed) conformation.

Again, if the membrane tension is equal to tC and the applied pressure
has a value p¿ 40 mmHg, then the conformation of the MscL changes to the
expanded state with very low probability (rule 2) because the applied suction
is not enough to trigger the channel activation.

However, if the membrane tension is equal to tC and the applied suction is
between 0 and 40 mmHg (or close to the last value), then the closed conforma-
tion is more likely to change to the expanded conformation (rule 4). The next
transition occurs only if the applied suction is kept around a constant value
of 40 mmHg (rules 6→11). The four subsets of rules 13→17, 18→22, 23→27,
28→32 describe the flickering through subconducting open states when the
applied suction is maintained around the value of 40 mmHg. All these rules
consist of a coupling between an environmental rule and a communication
rule; the communication of objects x ⊆ MReg from the internal region to
the environment is to be considered consistent with the conductance of the
respective subconducting state (see Section 2.1).

Once the MscL is in an open substate (values tSO1, tSO2, tSO3, tSO4 of the
membrane tension), if the pressure is maintained at a constant value p ∼= 40
mmHg, then the MscL can reach its fully open conformation with different
probabilities depending to the current conformation 17, 22, 27, or 32). The
tension assumes the value tO and the next subset of rules to be applied is
33→35. With the highest probability, a multiset x in MReg is communicated
from the region to the environment and the channel returns to the initial
closed conformation (rule 36), assuming that no more pressure is applied.
The simulation of the cycle ends.
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Starting from the open conformation, we also assume that some more
possible transitions (rules 37, 38) can happen when the applied suction is
increased, but we do not specify any particular probability value for these
rules, since we would need a comparison with biological data that, to the best
of our knowledge, is still missing.

We now give the formal definition of the in vitro model for MscL activity.

Definition 3. A P system modeling MscL in vitro is defined by the construct

Πinvitro = (V, µ, Tension,MEnv,MReg, R),

where:

• V = Vchem∪{w} is the alphabet of the system, where Vchem = {a1, . . . , an}
is a finite set of symbols corresponding to the chemicals diluted in water.
To denote a water molecule we use the different symbol w /∈ Vchem;

• µ ∈ {[t ]t, †} is the membrane structure consisting at most of a unique
membrane labeled with the variable parameter t (which corresponds to
the membrane tension value). If the membrane is no longer present in the
system, because of its lysis, then we use the notation †;

• Tension = {tC , tCE , tSO1, tSO2, tSO3, tSO4, tO, tL} is a finite set of labels
for the membrane structure [t ]t, that is a set of values for the membrane
tension t;

• MEnv,MReg are the multisets present in the environment and in the re-
gion, respectively (we can assume that, initially, MEnv = MReg, because
identical buffers are considered as in vitro experiments);

• R is the set of environmental rules and communication rules previously
listed.

Remark 1. Typical “symmetrical buffers” used for in vitro experiments [44]
contain, for instance, 200 mM KCl and 40 mM MgCl2; hence we might define
MEnv = MReg = a200

1 a40
2 wN , where a1=KCl, a2=MgCl2, and N is an integer

much larger than the number of chemicals dissolved in the solution. The P
system defined for the modeling of MscL activity during patch clamping ex-
periments with symmetrical buffers can be used also for modeling experiments
where nonsymmetrical buffers are used; that is the case when MReg 6= MEnv.
See Section 7 for a comprehensive analysis, covering also the case of in vivo
model.

A configuration of the system is determined by the state of the mem-
brane, its tension value (in the case the membrane has not been broken)
and the multisets present in the environment and inside the region. If the
membrane has undergone a lytic rupture, then we denote it by the sym-
bol †; obviously, we do not associate any tension value to it and, in this
case, only the environmental multiset (which is the union of the multi-
sets initially present in Env and Reg) remains. Thus, a configuration C
of Πinvitro is a 4-tuple ([ ], t,MEnv,MReg) or a couple (†,MEnv), where
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t ∈ Tension, and MEnv,MReg are multisets over V . The initial configuration
is C0 = ([ ], tC ,MEnv,MReg), with MEnv = MReg; the final configuration Cf is
a 4-tuple ([ ], tC ,M ′

Env,M ′

Reg) or a couple (†,M ′′

Env), with M ′

Env,M ′

Reg,M
′′

Env

such that M ′

Env ∪M ′

Reg = M ′′

Env = MEnv ∪MReg.
A transition from one configuration to the next one is a function τp of the

states of each component:

τp : ({[ ]} × Tension× Env ×Reg) ∪ ({†} × Env) −→

({[ ]} × Tension× Env ×Reg) ∪ ({†} × Env)

such that

([ ], t,MEnv,MReg) 7→ {([ ], t′,M ′

Env,M ′

Reg), (†,M
′′

Env)},

(†,MEnv) 7→ (†,MEnv).

Given the current configuration C, the next configuration C ′ = τp(C)
is obtained from C by applying the rules from R, according to the pres-
sure values p in environmental rules and the arrows among tension values
in Figure 2. At each step, the multisets M ′

Env,M ′

Reg in C ′ are such that
M ′

Env ∪M ′

Reg = MEnv ∪MReg holds (that is, objects are never modified, but
only communicated).

We define a cycle simulation as a (finite) sequence of transitions starting
from the initial configuration C0 and ending in one of the final configurations
Cf . Observe that, formally, there can also exist infinite sequences of transitions
because rule 1, which describes the environmental condition where no suction
is applied, could be applied forever (with the highest probability). Anyway,
only a finite number of transitions is meaningful in modeling an MscL cycle.
We refer to Section 8 for a theoretical investigation of subsequent activation
cycles of MscL.

5 A P Model for In Vivo Functioning of MscL

In this section, we propose a model for the in vivo activity of MscL. By con-
sidering the knowledge accumulated from laboratory experiments as a basis
for investigation, we make some hypotheses about the functioning of MscL
which are subject to downshocks in natural or artificial environments. With
respect to the in vitro model, we consider only a reduced number of tran-
sitions among channel conformations (see Figure 3), add a new membrane
tension value reachable only after a cycle, and propose further possible transi-
tions among membrane tension values which can occur in response to different
environmental conditions. In particular, for the sake of simplicity we do not
consider the channel subconducting open states used in the in vitro model.
For the moment, we do not associate any probability with evolution rules be-
cause our first goal is to describe the general behavior of MscL when it is not
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Fig. 3. States of the mechanosensitive channel during a cycle: (a) closed conforma-

tion; (b) expanded conformation; (c) open conformation.

studied with patch clamping. We also assume that after a closed-to-open cy-
cle has been performed the membrane can be subject to a stress which causes
its tension to be higher than it was before the channel activation. A deeper
analysis of the latter situation, corresponding to the behavior of the channel
and of membrane tension during subsequent activation cycles, will be given
in Section 8.

We recall that a hypotonic shock occurs when a certain quantity of pure
water is suddenly added to the environment, thus lowering the concentration
of solutes. The water added enters the cell by osmosis very quickly and hence
the osmotic pressure (and, consequently, the membrane tension) rises, causing
MscL to open in order to prevent cell bursting.

From a formal point of view, for the in vivo model we have to consider not
only the variable values of the membrane tension, but also the composition
of the multisets present inside and outside the bacterial region. Actually, we
will account for the concentrations of objects (in both the environment and
the region), as well as for the addition of water which may occur at any time
in the environment.

Let V = Vchem ∪ {w} be the alphabet consisting of a subset of symbols
for solutes (Vchem) and a special symbol (w /∈ Vchem) for the solvent compos-
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ing a solution (namely, w is used to denote a molecule of water, the solvent
considered in this model). The multiset M : V → N naturally describes the
multiplicities of chemicals and water.

Definition 4. Let x ∈ (Vchem ∪ {w})
+. We define the concentration of any

symbol a ∈ Vchem appearing in x as a function Conc : Vchem → Q which
assigns to the symbol a the value of the ratio between all occurrences of a in
x and the sum of all symbols from V appearing in x, that is

Conc(a) =
|x|a

|x|w +
∑

a∈Vchem
|x|a

.

The previous definition for the concentration of any symbol appearing in
the multiset can be extended to define the concentration of the entire multiset.

Definition 5. Let x ∈ (Vchem ∪ {w})
+. We define the concentration of x as

a function Conc : V + → Q which assigns to the multiset x the value of the
ratio between all occurrences of symbols from Vchem in x and the sum of all
symbols from V appearing in x, that is

Conc(x) =

∑

a∈Vchem
|x|a

|x|w +
∑

a∈Vchem
|x|a

.

Remark 2. Given the definition of concentration for a multiset x, observe that
if |x|w = 0 or

∑

a∈Vchem
|x|a = 0, then x does not correspond to a realistic

solution (that is, a mixture of solutes and solvent). Indeed, in the first case x
would consist only of pure chemicals, while in the second case x would consist
only of pure water. The two cases are not biologically relevant or plausible
from the point of view of the activity we intend to model. Hence, to avoid
these border situations, we will assume that

(alph(x) ∩ {w} 6= ∅) ∧ (alph(x) ∩ Vchem 6= ∅) ,

that is, the multiset x contains at least one symbol w and at least one symbol
from Vchem.

In the following discussion, when it is not necessary to give a detailed
description of the concentration in terms of all chemicals occurring in the
solution, we will briefly denote by Chem(x) =

∑

a∈Vchem
|x|a the multiset of

symbols from Vchem present in x; hence the concentration of x will be given
by

Conc(x) =
Chem(x)

|x|w + Chem(x)
.

For a sound definition of the in vivo model, the system for MscL activity
has to be defined in terms of three fundamental components: the external
environment, the membrane tension, and the internal region.
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The environment (Env) is made of solutes and water molecules, whose rela-
tive ratio (that is, concentration) may vary during hypotonic shocks, whenever
some water is suddenly added to the environment. The internal region (Reg)
consists of objects over the same alphabet of the environment (Vchem ∪ {w}).
This component is needed to account for the difference in concentration with
that of the environment. We also emphasize that, in order to simplify the
model, we are not considering any other processes occurring inside the region.

The variable tension assumes values from the finite set Tension = {tclose0
,

tclose1
, texpanded, topen, tlysis}. Each element in the set Tension will be used to

denote, as follows, the particular value (or the interval of values) of membrane
tension and, hence, also a conformation of the channel:

• tclose0
is the initial value of the membrane tension, the setting where the

cell grows in the medium, the channels are closed, and no events that
might trigger the activation of MscL occur;

• tclose1
is the value at the end of the first cycle, when the channels return

to be closed. In the following discussion, we will assume that tclose1
may

be either equal to or different from tclose0
;

• texpanded is the value that the membrane reaches during the phase of MscL
expansion, while the channel still remains closed; its value is between tclose0

and topen;
• topen is the value corresponding to the opening of MscL;
• tlysis is the value corresponding to the lytic threshold of the membrane;

when reached, the membrane will break and the cell will die.

The transitions among tension values are due to addition of water in the
environment (see Figure 4). We particularly emphasize here the transitions
from texpanded and topen to tlysis, which are assumed to be possible behaviors
of MscL when, during a cycle, more water is added to the environment. We
point out that, to the best of our knowledge, no biological investigations have
been done to bring these events to light.

In the sequel, the addition of water will be described by means of an
environmental rule which adds a fixed number of symbols w to the multiset
already present in the environment. Obviously, this is a rough representation
of biological reality, since it is difficult to count the exact number of water
molecules intervening during a hypotonic shock. Nonetheless, P models of
this type allow us to use specific values for symbols multiplicities and also to
consider significant ratios between multiplicities.

We stress the fact that for the in vivo model both the environment and
the region play a fundamental role in the description and application of rules
(and hence in the modeling of the MscL activity), together with the membrane
tension already present in the in vitro model. The environmental rules will
be defined here with respect to water addition and, as will be clear soon, it
will also be necessary to define a new class of rules which accounts for the
differences between the multiset in the environment and the multiset in the
region.
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Fig. 4. Membrane tension transitions with respect to the addition of water.

Definition 6. An in vivo environmental rule is denoted as

〈wn, add〉[t→ [t′

for some n ∈ N, t, t′ ∈ Tension. It describes a (possible) change of the mem-
brane tension value due to an addition of n water molecules to the envi-
ronment, which can happen at any time and cannot be controlled by any
component of the system.

We define now a new type of evolution rule whose application depends on
the number of water molecules and chemicals which are present (at the time
of its application) in both the environment and inside the region.

Definition 7. A concentration-based evolution rule is a rewriting rule of the
form

x [t y
k1≤C(x,y)≤k2

−→ [t′ ,

where x is the environment multiset over the alphabet V , y is the region
multiset over V , t, t′ ∈ Tension are membrane tension values, and k1 ≤
C(x, y) ≤ k2 is a condition depending on the environment and the region
multisets x, y for some k1, k2 ∈ R (even null values), defined as
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C(x, y) =
Conc(y)

Conc(x)
.

Environmental and concentration-based rules can be coupled to describe en-
vironmental changes in the quantity of water, which can have different con-
sequent actions according to the condition C(x, y) satisfied; that is, we can
write

〈wn, add〉 [t
k1≤C(x,y)≤k2

−→ [t′ .

By Definition 7 and the coupling between environmental and concentration-
based rules, we deduce that the ratio

Conc(y)

Conc(x)
=

Chem(y)

Chem(x)
·
|x|w + Chem(x)

|y|w + Chem(y)

increases whenever some water addition occurs in the environment. This in-
crease causes the influx of water into the region and the activation of MscL,
but if the ratio suddenly increases too much, then the membrane can undergo
a lytic rupture. Hence, in what follows we will consider two threshold val-
ues for the condition C(x, y), namely ka for triggering the channel activation
(hence, C(x, y) > ka must be satisfied to begin the simulation of an MscL cy-
cle) and kl for the membrane lysis situation (hence, if C(x, y) ≥ kl is satisfied,
the cell dies).

The passage of objects from the environment into the region (and vice
versa) will be described by means of communication rules with different tar-
get indications. Precisely, the classical target of type out will be used to denote
the efflux of water and chemicals from the region to the environment, which
happens if and only if the MscL is open. Instead, the influx of water from
the environment to the region directly through the membrane (by osmosis)
will be denoted with a new target indication called through. Formally, a com-
munication rule of type out will be simply described by the couple (x, out),
where x ∈ (Vchem ∪ {w})

∗, while a communication rule of type through will
be described by the couple (wm, through) for some m > 0.

All necessary ingredients of the in vivo model have been introduced and
it is now possible to list the rules for the simulation of MscL activity. In what
follows, we assume that initially the bacterium is in an equilibrium state with
the surrounding environment (see Section 7 for some more considerations
about this assumption).

1. [tclose0
−→ [tclose0

,

2. 〈wn, add〉 x[tclose0
y

C(x,y)<ka

−→ (wh, through) [tclose0
, for some h such that

0 ≤ h¿ n,

3. 〈wn, add〉 x[tclose0
y

ka≤C(x,y)¿kl

−→ (wh, through) [texpanded
, for some h such

that 0 < h ≤ n,
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4. 〈wn, add〉 x[tclose0
y

kl≤C(x,y)
−→ (wh, through) [tlysis

, for some h such that
0 < h ≤ n,

5. [tlysis
−→ †,

6. (wh, through) [texpanded
−→ [topen

, for some h such that 0 < h < |x|w,

7. 〈wn, add〉 x[texpanded
y

ka¿C(x,y)≤kl

−→ (wh, through) [tlysis
, for some h such

that 0 < h ≤ n,
8. [topen

(y, out) −→ [tclose1
, for some y ⊆MReg,

9. 〈wn, add〉 x[topen
y

ka¿C(x,y)≤kl

−→ (wh, through) [tlysis
, for some h such

that 0 < h ≤ n,
10. [tclose1

−→ [tclose1
.

In the initial configuration of the system, the environment and the region
are in osmotic equilibrium (see Section 8), and the membrane tension value
is equal to tclose0

: no event is occurring in the environment, the cell is resting
and MscL are closed. No changes are made in any of the components (rule 1).

If a water addition occurs but the quantity of added water is very small
(i.e., the condition C(x, y) < ka is satisfied), some water molecules (h) may
enter the region – by osmosis – but no transitions occur for the channel (rule
2). After the application of this rule, we have the multiset x′ = x \ wh in the
environment and the multiset y′ = y ∪ wh in the region. This evolution step
corresponds to a small change in the concentration of the environment with
respect to the concentration in the region. Since the model we are presenting
is the first attempt to describe MscL activity and we are not considering
multiple substates, we assume that this small change is not enough to cause a
channel transition from the closed state to the expanded substate considered
in this work. Further refinements of our model could include all transition
substates and their flickering between each other.

A transition from the channel closed state to the expanded substate can
instead be modeled by the addition of a greater quantity n of water molecules,
such that the condition ka ≤ C(x, y) ¿ kl is satisfied. The tension value
reaches the value texpanded and, at the same time, water continues to enter
the bacterium by osmosis (rule 3).

If the water added is too much and its influx causes a steep rise in turgor
pressure (in this case kl ≤ C(x, y) holds), then the membrane tension suddenly
reaches its lytic threshold (rule 4), the membrane breaks, the multisets mix
in the environment, and the cell dies (rule 5).

Let us now turn back to the channel expanded substate, described by the
tension value texpanded. In this condition, water continues to pass directly
through the membrane until the turgor pressure is high enough to open the
channel, and hence the tension value reaches the new value topen (rule 6).

Once the channel is open, chemicals and water can exit the region and
pass to the environment by crossing the open pore (rule 8); then the channel
returns to the closed state (we assume that this transition can be modeled
by a single evolution step). The multiset y in MReg, communicated from the
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region to the environment, is left unspecified, but it should correspond to the
conductivity of the channel. In further developments of the model, as for the
in vitro model, this data will be considered and the form of the communicated
multiset will be specified.

When the tension value is equal to tclose1
, the cycle simulation ends since

we are defining a model for one activation cycle only. We assume that no
other water addition will occur and hence the cell rests in equilibrium with
the environment (rule 10).

Two more rules have been added to the model in order to predict the
possible behavior of MscL in case of further addition of water when the tension
is equal to texpanded or topen. In both cases (rules 7 and 9) we assume that
consistent addition of water (with a quantity near the lytic one, such that the
condition ka ¿ C(x, y) ≤ kl is satisfied) will cause the membrane lysis (rule
5) and, hence, cell death.

Definition 8. A P system modeling MscL in vivo is defined by the construc-
tion

Πinvivo = (V, µ, Tension,MEnv,MReg, R),

where:

• V = Vchem∪{w} is the alphabet of the system, where Vchem = {a1, . . . , an}
is a finite set of symbols corresponding to the chemicals diluted in water,
for which we use the different symbol w /∈ Vchem;

• µ ∈ {[t ]t, †} is the membrane structure consisting at most of a unique
membrane labeled with the variable parameter t (which corresponds to
the membrane tension value). If the membrane is no longer present in the
system because of its lysis, we use the notation †;

• Tension = {tclose0
, tclose1

, texpanded, topen, tlysis} is a finite set of labels for
[t ]t, that is, a set of values or intervals of values for the membrane tension
t;

• MEnv,MReg are the multisets present in the environment and in the region,
respectively;

• R is the set of environmental, communication, and concentration-based
rules given above.

As for in vitro model, a configuration of the system is determined by
the state of the membrane, its tension value (in the case it has not been
broken), and the multisets present in the environment and inside the re-
gion. If the membrane has undergone a lytic rupture, we denote it by
the symbol †; obviously we do not associate any tension value to it and
we consider only the remaining environmental multiset. Thus, a config-
uration C is a 4-tuple ([ ], t,MEnv,MReg) or a couple (†,MEnv), with
t ∈ Tension and MEnv,MReg multisets over V . The initial configuration
is C0 = ([ ], tclose0

,MEnv,MReg) and the final configuration Cf is of the form
([ ], tclose0

,M ′

Env,M ′

Reg), ([ ], tclose1
,M ′

Env,M ′

Reg), or (†,M ′′

Env).
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A transition from one configuration to the next one is a function τw of the
states of each component:

τw : {[ ]} × Tension× Env ×Reg ∪ {†} × Env −→

{[ ]} × Tension× Env ×Reg ∪ {†} × Env

such that

([ ], t,MEnv,MReg) 7→ {([ ], t′,M ′

Env,M ′

Reg), (†,M
′′

Env)},

(†,MEnv) 7→ (†,MEnv).

Given the current configuration C, the next configuration C ′ = τw(C) is
obtained from C according to the rules in R and the arrows among tension
values in Figure 4. At each step, the multisets M ′

Env,M ′

Reg in C ′ are such
that M ′

Env ∪M ′

Reg = MEnv ∪MReg holds (that is, objects are never modified
but only communicated). Moreover, since in the in vivo model water can pass
through the membranes even when the channel is closed, it is possible that
Conc(M ′

Env) 6= Conc(MEnv) and Conc(M ′

Reg) 6= Conc(MReg), that is, the
distribution of symbols from V may be different in successive configurations.

We define a cycle simulation as a (finite) sequence of transitions starting
from the initial configuration C0 and ending in one of the final configurations
Cf . Observe that there can also exist infinite sequences of transitions, because
rules 1 and 10 could be formally applied forever. In any case, we still consider
that only a finite number of transitions is meaningful in modeling a MscL
cycle.

6 Simulations In Silico

It is problematic to reconstruct the behavior of a complex entity like an MscL
using just mathematical models since it is difficult to capture all the factors
at play in equations. Several models have been proposed and constructed to
capture complex biological system dynamics. They include systems based on
integration of differential equations and Petri-net models. The major draw-
back of these models is that they adopt a centralized approach and try to
model the behavior of a complex system as a single atomic entity. As a con-
sequence, the observable behavior is constrained by the explicit variable and
rules programmed into the system.

A complex system, such as a biological one, consists of several subsystems
and the observable behavior of the system emerges out of parallel interactions
between its constituent parts, most of which may not have been scripted in
advance. In order to gain some experimental evidence about the quality of
the foregoing P models, they were used to conduct simulations in silico to
obtain some predictions about observable data that could be used to test
their soundness and validity. Important observables are the compound effects
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of complex chains of interactions over space and time based on the model,
particularly as they occur in global emergent behavior observed in biological
systems. This approach has been used in this section, where we describe some
of these simulations in software and the corresponding results for the in vitro
P model.

6.1 About Simulation Environments

Simulations conducted in silico have several advantages over actual experi-
ments in vitro and sometimes even observations in vivo. Biological experi-
ments need to be run several times in order to validate hypotheses. Each run
may cost hundreds of dollars, adding up to a large cost. The costs are even
higher if the runs get corrupted due to errors on part of the experimenter, e.g.,
by using a wrong concentration of a reagent. Although it must be acknowl-
edged that simulations may lack physical realism and appear incomplete and
unbelievable at first sight, as with most scientific models a suitable choice of
granularity and relevant features may provide powerful hints and insights.

Simulations are more cost effective, reasonably faster, and provide a higher
level of control than experiments in vitro. While the latter may take days from
setting up to extraction of results, simulations take only a few hours. Once
a simulation program is coded and debugged, it may be run as many times
as needed (with different parameters, if required) with little additional cost.
Simulations usually detect errors fairly early and they can be easily rectified.
This has been the case with the simulation environment used for this chapter.

6.2 Virtual Test Tubes

The MscL experiments were implemented on EdnaCo, a complex systems sim-
ulator running on a cluster of 24 PCs. EdnaCo is a virtual test tube (VTT
for short) that can be used as a distributed discrete-event simulation environ-
ment. It was originally developed to better understand reactions among DNA
molecules for computational purposes [18, 17]. While a full description of the
features and performance of EdnaCo can be found in [16], we summarize some
of the features here in order to make this chapter self-contained.

EdnaCo follows the complex systems paradigm of entities (objects) and
interactions, i.e., instead of programming their entire behavior over time, only
entities (originally DNA molecules) and individual interactions between pairs
of them are programmed by the user. The VTT is spatially arranged as a
3D coordinate system in which molecules (entities) reside. The tube may
move entities to simulate motion (possibly Brownian, according to a pre-
determined schedule, or no motion at all) and they are allowed to interact
freely. Entities could be homogenous or heterogeneous and may represent any
complex biomolecules. Each molecule is located at a unique space coordinate
at any given time. The VTT can also code for physico-chemical properties
such as temperature, pressure, salinity, and pH that may vary across space
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and time and affect the way entities interact. Depending on the nature of
the simulation, interactions between entities are programmed by the users.
Multiple instances of an entity behave in the same manner.

All entities are capable of sensing the position of other entities up to a spe-
cific distance defined as the radius of interaction. If two or more entities come
within interaction distance, they may interact with each other. An interac-
tion between two entities may be viewed as a chemical or mechanical reaction
between them. As result of interaction, existing entities may get consumed,
their status may change, and/or new entities may get created. Moreover, the
concentration of entities may be manipulated externally by adding or remov-
ing entities to or from the tube at any point in time. The running time of
a simulation is divided into discrete time steps, or iterations. At any itera-
tion, the state of the objects and the tube may change recursively, based on
previous changes, to reflect the interaction rules among themselves and/or
with their environment. Parallelism is implemented in EdnaCo by dividing
the VTT into a number of discrete segments, each running on a different pro-
cessor. This allows multiple interactions to take place at once. When entities
move, they may either change positions within a segment or migrate across
processor boundaries. The architecture of EdnaCo allows it to be scaled to
an arbitrarily large number of processors. Further details of this simulation
environment can be found in [16, 7].

6.3 Experimental Design and Emergent Behavior in Simulation

The MscL channels were simulated according to the local interactions de-
scribed above in Section 4. The behavior of a single MscL may change under
changing pressure conditions. EdnaCo is capable of simulating the behavior
of multiple MscL interacting in parallel under changing environmental condi-
tions. An MscL entity has a tension variable associated with it. As the external
pressure is varied at each iteration, the tension value gets updated according
to the probabilistic rules. The probabilistic rules are implemented using a
state-of-the-art random number generator with a very large period and other
desirable properties (see [12, 19] for details). For a typical run, the external
pressure may be increased at a fixed or variable rate. The MscL tension value
keeps on fluctuating until the pressure reaches the lytic threshold, upon which
the cell lyses (dies).

While the above simulation of a single channel could be accomplished using
a simple program, the major advantage of using EdnaCo is that a simulation
requiring a large number of objects (such as multiple MscL and other cellular
components in the extensions of the P models proposed below in Section 9)
can be run in a relatively short time due to the massive parallelism present
in EdnaCo.

The following are sample results from the simulation. The measured quan-
tities, the tension (Figure 6), the conductance (Figure 7), and the current (Fig-
ure 8) are emergent observed quantities that were not explicitly programmed
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in the simulation. The figures show their behavior over time. An iteration is
the time required for the objects to effect one interaction, i.e., to apply one
set of rules simultaneously. These results appear to be in line with general
biological phenomena and offer experimentalists the challenge of verifying by
actual experiments in vitro and, perhaps with more difficulty, in vivo.

Fig. 5. Variation of applied pressure.

7 Some General Considerations About the Models

In the in vivo model, we have made the assumption that the initial configu-
ration of the system corresponds to biological equilibrium, that is a situation
where no activation of MscL can occur. A biological equilibrium can be for-
mally described by considering the composition of the multisets in the envi-
ronment and in the region and their respective concentrations. We list here
all the possible combinations for multisets and concentrations, as well as the
corresponding biological reality of different prokaryotes:
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Fig. 6. Emergent behavior of membrane tension.

1. the situation where both the composition of the multisets and the concen-
trations are different, i.e., MEnv 6= MReg and Conc(Env) 6= Conc(Reg),
corresponds to the natural habitat of E. coli ;

2. the situation where the composition of the multisets is different but
the concentrations are equal, i.e., MEnv 6= MReg and Conc(Env) =
Conc(Reg), corresponds to the natural habitat of Halobacter salinarum;

3. the situation where both the composition of the multisets and the concen-
trations are equal, i.e., MEnv = MReg and Conc(Env) = Conc(Reg), cor-
responds to patch clamp experiments with the use of symmetrical buffers
considered in the in vitro model.

Note that MEnv = MReg, Conc(Env) 6= Conc(Reg) can never occur, because
if the multisets are equal, then, by definition, the concentrations must be equal
too; hence the previous list is exhaustive of all possibilities.

We claim that the in vivo model is general enough to cover all different
biological possibilities, and similar considerations can be applicable also to
the in vitro model (thus, it can be also used to describe patch clamping with
nonsymmetrical buffers).
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Fig. 7. Emergent behavior of conductance variation.

The above considerations are consistent with the situation of the prokary-
otes belonging to the domain Archaea living in hypersaline environments (such
as the Dead Sea). In halophilic Archaea such as Halobacter salinarum or
Haloferax volcanii (in Haloferax volcanii two mechanosensitive channels were
identified [27, 26]) there is practically no turgor pressure because the overall
concentration of solutes inside the cell and outside the cell (in the growing
medium) is practically the same. However, the quantity of each solute present
inside and outside the cell is very different. For example, in the case of Halobac-
ter salinarum, sodium ions are 4 mol/L in the growing medium, whereas inside
the cell the concentration is much lower (1.37 M); for potassium ions the ex-
ternal concentration is very low (0.032 M), whereas the internal concentration
is very high (4.57M). For more details see [34]. The model proposed in this
chapter is appropriate for describing this situation too.

This is one strategy developed by halophilic prokaryotes, the so-called
“salt-in” strategy [35], to cope with high sodium concentration outside the cell
(that is, with hypersaline environments). This strategy requires a considerable
number of changes to safeguard all regulatory and metabolic functions at
high salinity as, e.g., salt-adapted enzymes [14, 34]. This strategy is relatively
inexpensive in terms of energy, but requires far-reaching adaptations to the
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Fig. 8. Emergent behavior of current variation.

presence of high salt concentrations by the intracellular enzymatic machinery.
Adaptability of the cells to change salt concentrations is limited [35]. The
proposed model could be further modified to describe this strategy.

Another strategy used by other prokaryotes like Escherichia coli involves
the presence inside the cell (in the cytoplasm) of high levels of organic chem-
icals (such as glutamate, sugars, glycinebetaine, etc.) that act as organic os-
molites because they increase the osmotic pressure, thus decreasing the entry
of sodium ions inside the cell [28]. This strategy is energetically expensive, the
actual energetic cost depending on the type of organic solute synthesized. No
major modification of the intracellular machinery is needed (in comparison to
halophilic) and in most cases cells can rapidly adapt to changes in external
salinity [35].

8 An Investigation of Subsequent Activation Cycles

In this section we suggest some theoretical ideas, to be further investigated,
about some possible behavior of MscL during subsequent activation cycles, de-
pending both on artificial and natural environmental conditions. Specifically,
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we assume different responses of the membrane tension after one activation
cycle and the corresponding consequences of the responses.

Our main hypothesis is that the value assumed by the membrane tension
after a closed-to-open cycle of MscL, namely tclose1

, might be higher than
the value tclose0

it assumed before the activation of the channel. That is, the
relation

tclose1
= tclose0

+ l0

holds for some l0 ∈ R+, as already suggested in Section 5.
Thus, it is now natural to wonder about the behavior of the channel as

time goes by and during subsequent cycles. We can speculate that, after some
time the cellular membrane relaxes again and the tension value reached after
the first cycle returns equal to the initial value, that is, tclose1

= tclose0
. In this

case, a subsequent cycle – occurring after the time elapsed for the complete
membrane relaxation – would have the same dynamic of the first cycle.

We may suppose that the membrane is not able to relax and neutralize the
stress it suffered because of the turgor pressure. In this case, some different
assumptions can be made for the behavior of the channel during successive
cycles:

1. After each cycle the membrane tension value increases by a positive (or
null) real value until a threshold tension value T is reached for some
T ∈ R+, T < tlysis. That is, there exists an index i′ ∈ N, i′ ≥ 1, such that
tclosei

= tclose
i′

for all i ≥ i′:

tclose1
= tclose0

+ l1,

tclose2
= tclose1

+ l2,

. . .

tclosei
= tclosei−1

+ li,

tclosei+1
= tclosei

,

where, following the notations above, i′ = i+1. The increments l1, . . . , li−1

∈ R+, li ∈ R are not all necessarily distinct; in any case, the succession
of values is decreasing, that is, l1 ≥ l2 ≥ . . . ≥ li ≥ 0.

In this case, the behavior of the channel could be quasi-periodic, since
the tension finally reaches a threshold value for its gating. A similar dy-
namics could occur in the case where the tension of the membrane after
each cycle would be equal to or slightly different from the value it had
before the previous activation;

2. After each cycle the membrane tension value increases by a strictly pos-
itive real value; hence sooner or later it will be equal to the lytic tension
value, that is, there exists an index i′′ ∈ N, i′′ ≥ 1, such that tclose

i′′
is

equal to tlysis:

tclose1
= tclose0

+ l1,

tclose2
= tclose1

+ l2,
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. . .

tclosei
= tclosei−1

+ li = tlysis,

where, following the notations above, i′′ = i. Note that the finite sum
∑

1≤i<i′′ li of all increments l1, l2, . . . , li ∈ R+ must be equal to the dif-
ference L = tlysis − tclose0

.
In this case, no periodic behavior could probably be observed.

We stress the fact that the above considerations still have no underlying
biological data, because, to the best of our knowledge, no experiments have
ever been performed to analyze the behavior of Msc during subsequent acti-
vation cycles. However, we want to emphasize the relevance that an analysis
of this type might have for biologists or biotechnologists, probably for the
investigation of the life cycles of prokaryotes.

9 Final Remarks and Future Extensions

In this chapter we focused on the opening of MscL during patch clamping
experiments and hypotonic shocks. However, when bacteria are exposed to
either hyper or hypotonic shocks there are a lot of changes that occur in the
cells in order to respond, at both the short term and long term levels, to these
changes (see the review [47] and Section 9.4).

As future extensions to MscL models, we plan to consider also the response
time of the MscL opening, as well as times when the MscL remains open,
which would mean defining timed evolution rules. We intend to improve the
connections between in vitro and in vivo models (see Section 9.1) by adding,
for instance, all substate conformations and associated probabilities to the in
vivo model.

Indeed, the design of the software simulator presented in Section 6 provides
an easier way to check the effectiveness and the correctness of the models, and
hopefully it could become a tool for biologists for the investigation in silico
of MscL functioning.

9.1 Relations Between In Vitro and In Vivo Models

In vitro and in vivo P models might propose a platform for the integration of
the data obtained on MscL in prokaryotes, with special emphasis on E. coli.
The corroboration of both in vitro and in vivo results were reported in original
empirical papers on MscL [9, 33, 32, 3]. Thus, we expect that the further
refinement of our models (by means also of the software environment used to
produce simulations) would accelerate the integration of in vitro and in vivo
results. Moreover, with the explosion of molecular biology and the increase in
the quantity and quality of data obtained by high throughput technologies,
there is a trend nowadays in biology to move from the reductionistic approach
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to the integrative approach [36], either at the supermolecular level [22] or
at the systemic level [36, 25]. Indeed, the reductionistic approach and the
systemic, integrative approach are today on the same side of the barricade, a
totally different position than four or five decades ago when both approaches
started to flourish in biology [31].

In this perspective, the correlation between in vitro and in vivo results
represents one of the most important trends in biological research, and the
models proposed in this chapter could make an important contribution to it.

Moreover, they could be improved for describing the function of other
mechanosensitive channels with a different conductance (MscS and MscM),
working separately or together in a prokaryotic cell. In the absence of de-
tailed biological results concerning in vivo cooperation between different
mechanosensitive channels in the response to osmotic challenges, the P model
could elaborate scenarios starting from the results separately obtained on each
type of Msc by in vitro experiments. In this way, the improved model could
be of further use for biology scientists working on Msc to see how their exper-
imental results fit, not only with their own working hypothesis, but also with
the in silico experiments.

9.2 Multiple Occurrences of MscL

The in vitro model simulates the activity of a single mechanosensitive chan-
nel; nonetheless it is known that about 50-100 occurrences of MscL may be
found in a single bacterial cell, and many copies of MscL can be present in
a membrane patch. The apparent excess of MscL protein in bacterial cells,
besides the fact that one single MscL would suffice to dissipate osmotic gra-
dients within 1 millisecond, deserves further attention in both biology and
membrane systems.

We claim that the in vitro model can be easily extended to describe and
simultaneously analyze multiple occurrences of MscL. In fact, one cannot be
certain that all occurrences of MscL are in the same conformation in any
fixed environmental condition: when a suction is applied on a patch mem-
brane containing many channels, some may be completely open, some in a
subconducting (open) state, and some still closed. To describe all possible
reactions, it suffices to consider the same model for all channels but with dif-
ferent probability values associated with the evolution rules of each channel,
or even different membrane tension values ranging in a known real interval.

For instance, consider a patch membrane containing two channels, and
define the rules

〈p, apply〉[tC
−→prob=0.8 [tCE

for channel 1,

〈p, apply〉[tC
−→prob=0.3 [tC

for channel 2,

for the same value of p ∈ (0, 40] (that is, the first channel progresses to the
expanded conformation, while the second remains closed), and
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〈p′, apply〉[tCE
−→prob=0.7 [tSO1

for channel 1,

〈p′, apply〉[tCE
−→prob=0.5 [tCE

for channel 2,

for the same value of p′ ∼= 40 (that is, the first channel progresses to the
first subconducting conformation, while the second remains in the expanded
conformation); and so on for all other rules.

For an analysis of this type the software simulator (supported by real
data for multisets and channel conductivity) can correctly perform different
simulations, with different input values assigned to all parameters, and can
be used to follow all possible choices for next state transitions.

From the relation5 t = ap + b between the tension t and the pressure
p, where a and b are values depending on the radius of the patch (see [44]
for some picture of patches with different values for radius), we know that
the tension which determines the status of the channel depends on its actual
position on the patch membrane. For instance, we might observe different
behaviors in the case in which the channel is close to the border of the patch,
or in the case in which it is placed in the middle of the patch, and so on.
Obviously, such differences are larger when the geometry of the patch is not
uniform; specifically:

(i) if the patch is a perfect half sphere, then the tension of the channel will
always be the same whatever the position of the channel on the patch,
since the radius is always the same;

(ii) otherwise, the tension of the channel changes from place to place, since
the tension increases as the radius increases, that is, when the channel is
closer to the border of the patch (if the patch is flat) or when the channel
is far from the border (if the patch is long and narrow).

5
We derive the relation between the membrane tension and the patch pressure

from a version of Laplace’s law (in [21]):

t − t1/2 =
r

2
· (p − p1/2),

where r is the radius of curvature of the membrane patch (under the external

suction applied to the patch pipette) and p1/2 and t1/2 are, respectively, the

negative pressure and the membrane tension at which the channel is open 50% of

the time (they can be assumed to remain constant for a membrane patch during

an experiment). Since our aim is to define a discrete model, we may assume

that r also remains nearly constant for the pressure at which the MscL is open

(r = ropen) and for the pressure at which it is closed (r = rclose); we can also fix

a value for the radius during substate transitions (r = rsubstate). It follows that

we can assume a linear dependence of the membrane tension with respect to the

applied pressure, that is,

t = ap + b,

where a = r/2, b = t1/2 − (r/2)p1/2, and r takes a fixed constant value in the set

{rclose, rsubstate, ropen}.
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We can assume the same kind of behavior for many channels. Hence, when
considering multiple channels in the same patch, we can have the following
situations: if the patch is a perfect half sphere (case (i)), then the tension is
equal for all channels (that is, the same setting of the in vitro model is valid
for all channels); otherwise (case (ii)), the tension changes from channel to
channel and hence different settings of the in vitro model must be used for
each channel.

We believe that by determining the right set of values for probability for
a single channel and by considering multiple channels (each with a speci-
fied set of parameters corresponding to a presumed radius) we can predict
the positions (the distribution, more precisely) of the channels on the patch
membrane, which is something unknown to biologists.

9.3 Effects of Inhibitors and Activators

The occurrence of inhibitors for MscL such as gadolinium ion, amiloride, and
aminoglycoside antibiotics (e.g., streptomycin, gentamicyn, and neomycin) as
well as of activators (such as amphipathic molecules, molecules that have
both hydrophilic and hydrophobic groups, etc.) are not only very useful tools
in biological experiments, but could also be used to refine the P model of
mechanosensitive channels. For example, P features as promoter and inhibitor
objects could be included in the models in order to describe the changes in
the activation of MscL and in cell functioning.

Gadolinium ion is an inhibitor of mechanosensitive channels (not only for
the ones of large conductance); its presence causes a decrease in the osmotic ef-
flux of solutes from E. coli and other microorganisms during hypotonic shock
(more details in [48]). Relatively low concentration inhibits MscL activity
both in situ and in reconstituted liposomes, but increasing the pressure gra-
dient can reactivate the blocked channels. Gadolinium ion may act directly on
mechanosensitive channels, or its effect may be exerted via membrane lipids,
rendering the bilayer less effective in transmitting the stretch force. Moreover,
it was shown that Gadolinium ion is an inhibitor of MscL in the cyanobac-
terium Synechocystis PCC 6803 during a hyperosmotic shock [3].

Similar attention may be paid to simple peptides like gramicidin, which is
used to study artificial mechanosensitive channels because it forms channels
in bilayers. When the bilayer tension is increased, two molecules of gramicidin
link to each other and thus form a dimer which is responsible for the formation
of a channel. Gramicidin has provided the opportunity to analyze possible
underlying molecular mechanisms in extremely well defined simple systems
(for more details see [21]).

We believe that our P model could be used and adapted to predict the
inhibition activity of gadolinium and the function of gramicidin channels, to
hopefully derive relevant data for biologists.
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9.4 Short and Long Term Responses to Osmotic Pressure

Mechanosensitive channels are not the only structures involved in osmoregu-
lation and water balance in a prokaryote cell, either on a short or a long term
basis. Other structures involved in these processes are porins, aquaporins,
glycerol facilitators, aquaglyceroporins, K transporters, and osmoprotectant
transporters, whose structure and functioning we briefly discuss.

Porins are proteins found only in the external membrane of Gram nega-
tive bacteria; three molecules belonging to the same type of porin together
form a pore across the external membrane. This pore is filled with water and
allows the passage of some ions and molecules according to the concentra-
tion gradient. Bacterial porins are not static, permanently open pores, but
can switch between short-lived open states and closed conformations, and can
also remain in an inactivated, non-ion conducting state for prolonged periods
[11]. For instance, in E. coli several porins are known, such as OmpC, OmpF
(where Omp stays for “outer membrane protein”), and so on. The total quan-
tity of OmpC and OmpF are fairly constant, but their ratio changes with the
osmolarity of the medium. The proportions of these porins can be different
for cells grown under given conditions. For instance, in E. coli the increase in
the osmolarity of the growing medium induces an increase in the synthesis of
the porin OmpC (and a decrease in the synthesis of the porin OmpF). Thus,
at high osmolarity the outer membrane in E. coli contains more OmpC and
less OmpF [11].

Aquaporins are transmembrane water channel proteins, they are tetra-
meric assemblies of four subunits each containing its own aqueous pore (more
details in [40]). Glycerol facilitators are channels permeable to glycerol or
small uncharged molecules, whereas aquaglyceroporins are a new class of wa-
ter channels also permeable to glycerol, but to a lesser degree than glycerol
facilitators [13, 23].

K transporters act in this way: when E. coli is placed in a medium of
high osmolarity (not produced by K ions), the cells respond by synthesizing
a specific uptake system for potassium, whose specific and controlled entry
into the cell will contribute to maintaining the internal osmotic pressure at
optimum. In E. coli there are Trk transporter, Kdp transporter, and a sensor
kinase (KdpD) that catalyze potassium uptake with different kinetic param-
eters during osmotic upshifts (for more details see [48]).

Osmoprotectant transporters become active also during osmotic upshifts,
thus enabling the cell to accumulate osmoprotectants from the external
medium. The best known osmoprotectant transporters are the ProP trans-
porter in E. coli and the Betp transporter in Corynebacterium glutamicum
[48].

So, the interplay between different structures involved in the response to
osmotic challenges (either upshifts or downshifts) at short and long term lev-
els, all hot topics in microbiology, could be positively affected by contributions
from P systems. Moreover, it has to be stressed that during osmotic challenges
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other fundamental processes (e.g., respiration) inside the cell are also affected
[3, 48]. The integration of these changes in a more generalized mathematical
model could help in modeling biological processes occurring in the entire cell.
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CdeA2002, Curtea de Argeş, Romania, August 2002. LNCS 2597, Springer,

Berlin, 2003,

39. J.C. Schaff: A General Computational Framework for Modeling Cellular Struc-

ture and Function. Biophys. J., 73 (1997), 1135–1146.

40. S. Scheuring, P. Titmann, H. Stahlberg, P. Ringler, M. Borgnia, P. Agre, H.

Gross, A. Engel: The Aquaporin Sidedness Revisited. J.Molec. Biol., 229 (2000),

1271–1278.

41. S.I. Sukharev: Mechanosensitive Channels in Bacteria as Membrane Tension

Reporters. The FSEB Journal, 13 (Supplement 1999), 55–61.

42. S.I. Sukharev, M. Betanzos, C.S. Chiang, H.R. Guy: The Gating Mechanism of

the Large Mechanosensitive Channel MscL. Nature, 409 (2001), 720–724.

43. S.I. Sukharev, P. Blount, B. Martinac, C. Kung: Mechanosensitive Channels of

Escherichia Coli. The MscL Gene, Protein, and Activities. Annu. Rev. Physiol.,

59 (1997), 633–657.

44. S.I. Sukharev, W.J. Sigurdson, C. Kung, F. Sachs: Energetic and Spatial Param-

eters for Gating of the Bacterial Large Conductance Mechanosensitive Channel,

MscL. J. Gen. Physiol., 113 (1999), 525–539.

45. M. Tomita et al.: E-CELL – Software Enviroment for Whole-Cell Simulation.

Bioinformatics, 15, 1 (1999), 72–84.

46. M. Tomita et al.: The E-CELL Project – Towards Integrative Simulation of

Cellular Processes. New Generation Computing, 18 (2000), 1–12.

47. J.M. Ward: Patch-Clamping and Other Molecular Approaches for the Study of

Plasma Membrane Transporters Demystified. Plant Physiol., 114 (1997), 1151–

1159.

48. J.M. Wood: Osmosensing by Bacteria Signals and Membrane-Based Sensors.

Microbiol. Mol. Biol. Rev., 63, 1 (1999), 230–262.



Chapter 3
P Systems for Biological Dynamics

Luca Bianco, Federico Fontana, Giuditta Franco, Vincenzo Manca

University of Verona

Department of Computer Science

Strada Le Grazie 15, 37134 Verona, Italy

{bianco,fontana,franco}@sci.univr.it, vincenzo.manca@univr.it

Summary. P systems have clear structural analogies with the cell. However, cer-

tain difficulties arise when one attempts to represent a biomolecular process using

these systems. This chapter suggests some ways to overcome such difficulties and to

provide P systems with further functionalities aimed at increasing their versatility

in the modeling of biomolecular processes. Concepts from state transition dynamics

are taken to put P systems in a general analysis framework for dynamical discrete

systems. An explicit notion of environment is proposed to provide P systems with

a regulatory and constraining agent, as real biomolecular processes must deal with.

The chapter focuses on a new rewriting strategy inspired by biochemistry, in which

reactivities play a central role in driving the rules as happens during biochemical

reactions. Tests on an algorithm implementing rewriting with reactivities, realized

on a simulator called Psim, show the capability of this algorithm to express sev-

eral processes with precision, particularly those presenting oscillatory phenomena.

Finally, an analysis of the process of leukocyte recruitment is also performed using

Psim.

1 Introduction

We know that the simplicity of a computing device does not limit its power to
solve problems, assuming that its design criteria follow certain specifications
and enough space is provided to represent the data and to store the processing
rules, and enough time is allocated to the device to compute the solution. This
fact became clear after the Turing machine was designed and the proofs of
universality and equivalence with other computing machines and formalisms
(most of them being as simple as the architecture proposed by Alan Turing)
were given. So, why is a modern computer so different in practice from a
Turing machine, if it has the same computational power?

The answer is obvious: a modern computer architecture is much better
interfaced with the external world than a Turing machine, and, consequently, a
task can be more easily implemented on it. Algorithms and features that would
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need indefinite time to be organized to run on a Turing or a von Neumann
machine, are rapidly implemented over a modern computer instead. On the
other hand, Turing machines and equivalent “ideal” architectures have proved
to be invaluable for crossing the bridge between computer theory and practice.
In some sense, we can say that ideal machines cannot be avoided, although
any practical application of them must move through the existence of more
elaborate systems.

In 1998 P systems were presented as a new model of computation [27]. We
argue that this model can be considered and developed in such a way as to
become an analogue of Turing machines, playing the role of a mathematically
idealized model for biological systems. The following discussion will provide
specific arguments for this claim.

Before P systems, some other classes of rewriting systems had already
shown the ability of expressing specific biological phenomena [32, 20, 13]. P
systems move a step further: they have clear structural analogies with the
cell; in particular they model several features of the biological membranes
(for this reason they are often referred to as membrane systems). Moreover,
the transitions occurring in these systems recall certain evolution processes
that take place in a living cell.

From a formal viewpoint, P systems satisfy a result of universality even in
their basic definition [27]. In this sense they have all the computational power
needed to capture a biomolecular process – provided that we are able to
arrange it into an algorithmic procedure. In addition to this, the similarities
existing between P systems and (at least some aspects of) biological cells
suggest that P systems are able to represent the same biological process in
a meaningful way, that is, not only to compute it as any universal machine
would, but also to provide insight into the biological mechanisms determining
and controlling the process via the observation of the transitions of the system.

Unfortunately, for most of the classes of P systems considered so far, this
is true only to some extent. Modeling specific biological activities inside a P
system is not an easy task. Many alternative constructs derived from the ba-
sic definition of P systems have been proposed, sometimes capturing crucial
aspects of the biology of cells such as thickness, polarity, transport via sym-
port and antiport rules, catalysis, dissolution, polarity, permeability, inhibition,
promotion, communication via carriers, and energy [29, 26, 25], sometimes
importing paradigms from other formal systems also having biological impli-
cations, such as splicing and object structuring (in the form of strings) [30].
All these alternative constructs exhibit properties of universality; hence they
represent a first, necessary attempt to move P systems closer to the world of
biomolecules while preserving their computational power.

Nevertheless there are some aspects, crucial in almost any study of
biomolecular processes, that the traditional formulations of P systems do not
take into account (at least not so explicitly as to turn into versatile constructs
for biological applications):
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• Dynamics of biosystems. The halting of a P system indicates that a
computation has terminated successfully, but the dynamical behavior of
biomolecular processes has significant relevance in the description of the
processes themselves. This means that two or more processes that termi-
nate with identical configurations may move through completely different
transitions. Thus, in the context of living organisms it is more appropri-
ate to consider the dynamical patterns of the “life” evolving in a given
environment. The knowledge and classification of these patterns is a pre-
liminary task for understanding or influencing some behaviors (possibly
harmfully) for specific purposes.

• Environmental energy and resources. The resources available in the en-
vironment play a major role in the control a biomolecular process. The
existence in the environment of elements, which can act as catalysts or
provide the energy needed for the biochemical elements to react, can rad-
ically change the nature of a process. In particular, an environment which
periodically feeds the system with resources can transfer properties of pe-
riodicity to the system as well.

• Asynchronous system control. Biomolecular mechanisms are the result of
many individual local reactions, each of them formed by processes whose
extension is limited in time and space. These processes interact with each
other by means of specific communication strategies, in a way that they
finally exhibit a (sometimes surprising) overall coordination. In this sense,
and despite the coordination, biomolecular processes are asynchronous.

Clearly, these aspects are closely related one another: shifting the focus
on the system dynamics means that less attention is paid to the final con-
figuration of the system; meanwhile, the continuous control of the resources
needed by the process to evolve is critical to drive the system dynamics along
a specific trajectory. The environment itself has the role of a “supervisor” in
the process control, since it becomes responsible for a sort of external input
whose effects in the system propagate via local reactions.

How do today’s P systems deal with the points just outlined? About the
first point, we know that P systems are intended to “consume” the avail-
able resources in a maximally parallel way during the rewriting of symbols.
Imposing this property, all the symbols that are present in the system in a
given configuration become potential resources: they are consumed as much
as possible, and new symbols are produced as a consequence of that action.
In other words, maximal parallelism constrains the system to consume all the
available resources during a transition.

We know that we can regulate the system evolution by adding auxiliary
symbols (and corresponding cooperative rules which use such symbols) or,
alternatively, by providing the system with priority constraints on the rules
to form (sometimes complex) relationships of precedence for the rewriting
rules. But, this modification of the system structure is not guaranteed to have
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a corresponding biological counterpart. So, we are looking for an alternative,
more biologically founded strategy for the regulation of parallelism.

About the second point, we know that nonterminating processes are of key
importance in the study of periodicity and quasi-periodicity, two aspects whose
detection is important for understanding many biological processes [33]. From
this viewpoint, many existing types of P systems do not provide versatile tools
to handle periodicity.

The question of resource availability (this issue leads us to the third point)
is unavoidable in the study of biomolecular phenomena. P systems, in their
native definition, do not take any energetic constraint into account. So, it
is not unfeasible for them to use indefinitely large amounts of resources to
perform a computation: clearly, this cannot happen in nature. Other types of
P systems have been proposed in which energy is considered as a constraining
factor, although in those systems the environment, intended as a place to
exchange resources, does not play a central role [31, 12].

Finally, P systems are organized in a way such that their evolution is syn-
chronous, i.e., a global clock triggers the production of new symbols inside all
membranes. This limits their versatility in modeling asynchronous phenom-
ena.

Coming back to our initial considerations on ideal and practical computing
devices, it is our opinion that P systems are still at an early development
stage. On the one hand, their simplicity does not limit their computational
power and, in fact, this simplicity has allowed us to prove important results
of universality. On the other hand, much research still has to be done to
get P systems closer to the world (especially, but not only) of biomolecular
applications while keeping them theoretically well-founded. Turing machines
have found in modern PCs their applied counterpart: it is time, now, to look
for ways that turn P systems into real biomolecular computing devices.

The considerable research aimed at proving the well-foundedness of the
various types of P systems (see, e.g., [28]) is the background of the presen-
tations in this chapter. However, we have focused our effort on addressing
some novel theoretical and practical issues especially oriented to biomolecular
computing – this applicative direction is followed also by other groups [6, 3, 1].

First, we consider a new perspective (for many aspects still in progress)
according to which P systems are cast in a dynamical framework. In this per-
spective, we will characterize the transitions and the space state of a discrete
system using state transition dynamics [23]. Then we will introduce P systems
with boundary rules (PB systems) and PB systems with environment (PBE
systems) [5, 4] as constructs in which the concept of environment cycle is
proposed to represent cyclic biological behaviors; meanwhile the definitions
of periodicity and quasi-periodicity of state transition dynamics of P systems
apply at an operative level.

Next, we propose to observe the rules of a rewriting system from a differ-
ent viewpoint: not only will they produce new symbols starting from existing
ones, they will also be part of a system reproducing a reaction in which the
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application of every rule changes the relative amounts of reacting substances
present before and after the production. Moreover, such relative amounts will
influence the reactivity of the rules in a way that their application will be
dependent on the substance concentration, as normally happens in biochem-
ical phenomena. An application of this model to some known biochemical
problems – described so far in terms of differential equations – is proposed,
in particular in the simulation of the Brusselator, a simplified model of the
Belousov-Zabotinskii (BZ) reaction having great relevance in biochemistry
[33, 15, 37, 24].

Finally, we look at an extended version of a P system in action, aimed at
simulating some mechanisms in the human immune system when it activates
the leukocyte selective recruitment against an inflammatory process.

Closing this section, we want to stress once again the importance that the
dynamical characterization and the environment have in our vision of a class
of P systems especially intended to serve as biomolecular computers:

• the system dynamics, as a way to capture recurrent (or however deter-
mined) behaviors by “clues,” that are left even by those biomolecular pro-
cesses that cannot be decoded due to their apparently chaotic behavior;

• the environment, as an entity that regulates parallelism, alters an other-
wise unavoidable terminal state, provides resources, and acts as a delocal-
ized control for the system; as we have seen, these issues are intimately
connected with the dynamics of our system.

Although this survey does not pretend to define a comprehensive applica-
tion framework for membrane systems, the authors nevertheless hope that the
issues proposed here will suggest possible points of investigation from where
to carry on some more applied research on P systems. In the following sections
of this chapter we will constantly refer to the basic definitions and notation
of P systems and of multisets introduced by Păun [28].

2 The Dynamics of Discrete Systems

Continuous systems are often described in terms of differential equations.
A common strategy to figure out such equations consists of writing down
equilibrium conditions for infinitely small physical units such as time units,
dt, and spatial volume units, ds. From there, a classic approach to discrete
system modeling consists of picking up the continuous phenomenon (i.e., the
differential problem describing it) and then producing a discrete model of
it according to a given discretization method. Finally a simulation is run,
provided that the discrete model respects certain stability conditions. This
approach is largely used in the practice of system modeling.

A discrete model differs from the continuous phenomenon it comes from.
Sometimes this discrepancy can be arbitrarily reduced, that is, the model
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precision is proportional to the granularity with which the continuous phe-
nomenon is reproduced in the discrete domain.

We are here interested in those physical phenomena whose characterization
(that is, the information needed to describe them) is inherently discrete. In
this case a discrete model can represent the physical phenomenon completely.
This is the case of many biomolecular processes (think, for instance, of DNA
replication [30]).

For the above reasons – particularly for the last one – we are especially
interested in discrete systems regardless of any specific relationship with a
continuous system, and of any prior argument on the precision of the discrete
solution versus the continuous one. Furthermore, in most cases of biological
interest the discrete paradigm can be extended even to the values the system
assumes during its evolution, in a way that numerical values are conveniently
substituted by symbols.

The state transition dynamics formalism considers a system defined in a
discrete domain assuming discrete values. It studies properties such as state
orbits and trajectories, periodicity, eventual periodicity and divergence, re-
currence of states, attractors, and fixed points. By means of this analysis we
are able not only to characterize such properties, but also to make important
considerations about determinism vs. nondeterminism, and about regularity
vs. chaos.

To give an idea of the characterization given by state transition dynamics,
we report here the most important definitions and results (sometimes in a
quite informal presentation). For further details, discussions, and mathemat-
ical insight we refer you to [23] where a general approach to discrete system
dynamics has been investigated in its formal and computational aspects.

Definition 1. A state transition dynamics is a pair (S, q) where S is a set of
states and q is a function from S into its power set:

q : S → P(S) .

By calling quasi state any subset X ⊆ S, and extending the application of q
over quasi states, i.e.,

q(X) =
⋃

x∈X

q(x) ,

we map quasi states to quasi states by means of q to form orbits, and character-
ize specific trajectories along these orbits by means of the following definitions.

Definition 2. An X-orbit is a sequence {Xi}i∈N of quasi states such that

X0 = X, i = 0,
Xi ⊆ q(Xi−1), i > 0.

(1)

An x-trajectory is a function ξ : N→ S such that

ξ(0) = x,
ξ(i) ∈ q

(

ξ(i− 1)
)

, i > 0.
(2)
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Let us denote by qi the composition of q repeated i times, and let us define
q∗(x) =

⋃

i∈N
qi(x). We refer to the following special trajectories as flights

and blackholes:

Definition 3. An x-trajectory is an x-flight if it is an injective function on
N. An x-flight is an x-blackhole if q∗(x) ⊆ ξ(N), where ξ(N) is the image set
of ξ.

When S is made of symbolic values, the relation y ∈ q(x) induced by
q between two states, x and y, is conveniently expressed using the notation
typical of rewriting systems: x → y. Note that we can easily introduce non
terminating computations as long as q is total.

It is clear that the notion of a dynamical system defined above is non-
deterministic, because any state can transform into a set of possible states,
though an equivalently expressive deterministic system where states are the
quasi states of the original system can be figured out. The nondeterministic
aspect is essential for the modeling of many phenomena.

We now give a characterization of the evolution in these systems.

Definition 4. An X-orbit is periodic if qn(X) = X for some n > 0. An orbit
is eventually periodic if qn+k(X) = qk(X) for some k, n > 0. In this case k
is called the transient and n the period.

Definition 5. An X-orbit is Ω
(

f(n)
)

-divergent with respect to a function

µ : S → N, called Ljapunov function, if µ
(

qn(X)
)

has order Ω
(

f(n)
)

. A

similar definition holds for the order of divergence O
(

f(n)
)

.

Definition 6. A state x is a fixed point if the transition relation transforms
it into itself deterministically, that is, q(x) = {x}.

Periodicity and eventual periodicity are properties with strong computational
significance. It can be shown that, in a suitable computational framework
where every machine finds a counterpart in a corresponding state transition
dynamics, the periodicity decision problem turns out to be computationally
equivalent to the termination problem [23]:

Proposition 1. Given a computationally universal class of machines, the
(eventual) periodicity of the related dynamical systems is not decidable.

Affine to periodicity (but weaker) is recurrence:

Definition 7. A state x is recurrent if x ∈ qn(x) for some n > 0. A state x
is eternally recurrent if for all n > 0 such that y ∈ qn(x) there is m > 0 such
that x ∈ qm(y).

A system dynamics is ultimately characterized by its attractors, which in
very first approximation can be seen as quasi states into which the system
must fall in the end. First, we say that a Y -orbit is included in an X-orbit
if the former sequence is contained in the latter sequence, and eventually
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included if the former sequence is included in the X-orbit except for a finite
number of quasi states.

We call basin a set B ⊆ S such that q(x) is included in B for every state
x ∈ B. Inside a basin we possibly find an attracting set A, i.e., a subset which
eventually includes the x-orbit of every state x ∈ B. If A is minimal under
set inclusion, i.e., no subsets (even those made up of a single state) can be
removed from A without causing the loss of the attracting property, then our
attracting set is an attractor.

A complete characterization of attractors requires more definitions than
those recalled in this chapter; we refer to [23] for details. In particular, we
have outlined here only the so-called unavoidable attracting sets and the cor-
responding attractors. It can also be shown (we omit here all the intermediate
results, along with further definitions) that a state transition dynamics can
have three different types of attractors:

1. periodic attractors, that is, periodic orbits (fixed point attractors are a
special case);

2. eternally recurrent blackholes;
3. complex attractors, that is, a combination of the two previous cases.

The notion of an attractor opens a wider perspective on the classical no-
tion of calculus, which seems to fit better with a computational interpretation
of biological systems. In fact, these systems do not compute states that encode
results (according to the Turing paradigm); rather, they “compute” attrac-
tors or stable regimes satisfying behavioral requirements that respect certain
conditions for life.

Particularly interesting are chaotic attractors. Life chooses forms ap-
proaching chaos, while trying not to fall into it. While getting closer to this
total freedom, simple cycles take the rich and complex forms featured by
evolution and adaptation. The expression at the edge of chaos [19], in fact,
expresses the typical condition in which biological systems explore the space of
computable forms moving along a threshold that lies between biological status
quo and chaotic evolution, both of them destructive for a species. However,
at the edge of this threshold lies that constructive evolution life is constantly
searching for.

The (nondeterministic) notion of orbit becomes useful also in an attempt
to give a characterization of discrete chaos. Looking at chaos from this per-
spective gives further insight into the meaning of nondeterminism.

Chaotic dynamical systems are characterized by the following features:

• Global recurrence. In a chaotic dynamical system the set of all states is
its own attractor, which is also called a strange attractor. In other words,
a chaotic behavior is a global property that cannot be decomposed into
distinct parts.

• Sensitivity to initial conditions. This requirement implies an exponential
divergence of orbits where points that are “near” become exponentially
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“far” in time. This aspect can be viewed as an explosion of orbits, or as an
“informational drift” along the orbits, and it is relative to some Ljapunov
function with respect to some measure of distance between states.

• Ubiquitous periodicity. This property refers to the erratic aspect of chaos:
orbits are wandering everywhere and forever, that is, explosions of orbits
are mixed with orbit implosions in such a way that the dynamics return
periodically to themselves, according to their intrinsic recurrence, but these
periods are endlessly overlapping each other.

Such features can be expressed in the context of state transition dynamics
[23].

The definition of chaos expressed in terms of state transition dynamics
allows us to consider chaos of dynamical systems very similarly to the de-
terministic chaos of continuous systems (logistic maps, Bernoulli shifts, Man-
neville maps [9, 7]), which, although ruled by very simple dynamics, represent
evident chaotic behaviors. What makes these systems intrinsically chaotic is
the essential role of quasi states in their descriptions. In fact, their dynamical
systems are defined on states given by real numbers, but these numbers are
always expressed by some of their finite approximations, that is, by rational
numbers. In this sense, one may view an infinite set of states as a rational
number, that is, a quasi state which comprises all the real numbers that, at
some level of approximation, share the same rational number. Therefore, the
sensitivity to initial conditions corresponds to the exponential growth of a
Ljapunov function along the orbits associated with the finite approximations
of the states of the system. Analogously, the overlapping of periods in these
systems corresponds to the eventual intersections of their periodic orbits, when
we consider the quasi states which correspond to the finite representations of
their states.

In conclusion, what is called deterministic chaos does not differ from non-
deterministic chaos. The difference is only a matter of the way orbits are
defined. In deterministic chaos these are introduced by the intrinsic approxi-
mation of states; in the nondeterministic chaos of state transition dynamics,
the orbits are defined by state transition relations that provide many possi-
ble states that can be reached from a single state. But it is very important
to remark that neither is determinism synonymous to predictability, nor is
nondeterminism synonymous to unpredictability. Indeed, a system that is de-
terministic but chaotic becomes unpredictable, and a nondeterministic system
can be predictable in several aspects [14].

Similar behaviors have also been observed in other constructs, such as
Kauffman networks and cellular automata [17, 38, 39]. These systems show
that many relevant characteristics of their dynamical behavior are conse-
quences of the relationships existing between the transition function and the
state structure. Parameters like connectivity, channeling, majority, input en-
tropy, and figures taken from Derrida plots might inspire the search for similar
quantities in P systems. Also, many concepts of formal language theory can
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be revisited from the perspective of state transition dynamics: for instance,
the languages generated by grammars or recognized by automata are special
cases of attractors.

These considerations of nondeterministic chaos in discrete systems allow
to gain insight into those biomolecular behaviors that must be classified as
chaotic. In particular, such a notion of chaos might help in identifying orbits
from apparently “unreadable” biomolecular process dynamics, as life cycles
depict periodicities that are masked or blurred by nondeterministic shifts away
from the main trajectories, but leave fingerprints of these trajectories along
the way.

Conversely, it could enable us to specify richer and more “open” dynamics
than those defined by other representations, for instance the dynamics pro-
vided by the (deterministic) solution of a differential problem. In Section 4
we will see some examples, both formulated in terms of a differential problem
and analyzed using a discrete dynamical (string transition) system.

3 Resource Drawing from the Environment

The boundary of a P system with the external world is represented by the skin
membrane. In most types of P systems every membrane limits the scope of
the rules in such a way that, by definition, they can generate and/or consume
symbols only in the region delimited by their own membrane, and the skin
does not make an exception to this definition. The environment has no special
roles other than providing the (possibly infinite) amount of resources needed
by the system to evolve and receiving the (possibly indefinitely many) symbol-
objects that, once properly decoded, give the result of the computation the
system has performed.

PB systems, PBE systems, and PBE systems with resources [5, 4] enrich
the P construct by giving a more active role to the boundary and to the
environment. This idea has a strong foundation in some typical features often
exhibited by biological systems, such as:

• periodicity and quasi-periodicity. Life is always related to temporal cycles
where, even if some temporal irreversibility is intrinsic, many parameters
change periodically and some basic rhythms are preserved;

• stability and adaptability. Biological systems tend, within some limits, to
keep their “form” and their basic “behavior” even if their external world
changes;

• growth and degeneration. A living organism is able to demonstrate a correct
life cycle when it maintains some basic oscillating reactions in time.

In this sense, periodical behavior, resource availability, and influence of the
environment to the system are in close relationship to each other.

Recalling the basic construct of a P system, and in particular the notion
of a configuration as a string µ encoding the membrane topology and the
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multiset contained in every membrane [27], we define a PB system in the
following way:

Definition 8. A P system with boundary rules (PB system) is a construct

Π = (V, µ0, R, iO),

where:

(i) V is an alphabet of symbols;
(ii) µ0 is the initial configuration;
(iii) R is a finite set of rules of the following two forms:
• xx′ [

i
y′y → xy′ [

i
x′y, for x, y, x′, y′ ∈ V ∗ and 1 ≤ i ≤ m (communi-

cation rules);
• [

i
y → [

i
y′, for y, y′ ∈ V ∗ and 1 ≤ i ≤ m (transformation rules);

(iv) iO ∈ {1, . . . ,m} is the label of the output membrane.

In addition to basic P systems we have essentially the communication rules of
the form xx′ [

i
y′y → xy′ [

i
x′y. By means of these rules we can move objects

through membranes: if the membrane i contains the multiset y′y and the
multiset xx′ is present outside the membrane i, then the multiset x′ moves into
the membrane i and the multiset y′ is sent out from it; clearly, some of these
multisets may be empty. The salient fact in the action of the communication
rules is that they can “see” the immediate outside of the membrane region
they belong to. Indeed, their nature recalls the antiport rules from P systems
with linked transport [26].

The computational universality of PB systems was proved by showing
that they are able, using three membranes, to characterize the recursively
enumerable sets of vectors of natural numbers [4].

We present the notion of environment cycle of period k as the infinite
sequence where k multisets β0, β1, . . . , βk−1 occur periodically in time. Now
we can define a PBE system.

Definition 9. A PB System with Environment (PBE system) is a construct

Π = (V, µ0, R,E,RE , iO),

where:

(i) V , µ0, R, i0 are as in Definition 8;
(ii) E is an environment cycle of period k;
(iii) RE is a finite set of rewriting rules on multisets of the form x → y, for

x, y ∈ V ∗ (environment rules).

The system configuration at time j, i.e., ηj , is related to the previous
configuration ηj−1 by the following relation, in which we make use of the
dynamics functions qE and qR, related to RE and R (see Definition 1), re-
spectively mapping the environment configuration βj−1γj−1 and the (overall)
system configuration ηj−1 at time j − 1 onto respective new multisets
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ηj = βjγjµj = βj qE(βj−1γj−1) qR(ηj−1) , (3)

where:

• βj ∈ E is the multiset produced by the environment at time j;
• γj = qE(βj−1γj−1) is the environment configuration at time j resulting

from mapping the previous environment configuration, i.e., the multiset
βj−1γj−1, to the multiset γj by means of qE ;

• µj = qR(ηj−1) = qR(βj−1γj−1µj−1) is the internal system configuration
at time j, resulting from applying qR to the previous configuration, ηj−1.

Relation (3) is initialized with β0 (the first multiset of the environment cycle),
µ0 (the initial configuration), and γ0 = ∅.

Since the environment cycle E is periodic, it is not difficult to see that the
sequence of configurations η0, η1, . . . produced by the PBE system, read as a
sequence of quasi states, is eventually periodic in the sense of Definition 4.
The peculiar aspect of PBE systems is the assumption of a periodic behavior
of the environment; the system behavior is obtained consequently.

We now add resources to a PBE system as symbols of a finite set {ri}1≤i≤h,
with h > 0, hence obtaining a PBE system with resources.

Definition 10. A PBE system with resources is a construct

Π = (V, µ0, R,E,RE , iO),

where:

(i) V , µ0, E, RE, iO are as in Definition 9;
(ii) the rules in R have the following form:
• xx′ [

i
y′y rk

j → xy′ [
i
x′y, for x, y, x′, y′ ∈ V ∗, 1 ≤ j ≤ h, k > 0, and

1 ≤ i ≤ m; (communication rules);
• [

i
y rk

j → [
i
y′, for y, y′ ∈ V ∗, 1 ≤ j ≤ h, k > 0, and 1 ≤ i ≤ m

(transformation rules).

Along with resources, waste objects can be also introduced in the definition
of PBE systems with resources. The interplay between resource and waste
objects makes PBE systems with resources satisfy a condition of noncreativity :
every object produced by some rule is consumed by some other rule. In other
words, a noncreative system defines a cycle where no object is created or
destroyed, and every object is transformed into another one. The only new
objects that are introduced in the system are provided by the environment
cycle [4].

In the following example we exhibit a simple periodic PBE system with
resources.

Example 1. Consider the system

Π1 = (V, µ0, R,E,RE , iO),



P Systems for Biological Dynamics 95

where:

V = {a, b, r1, r2}, µ0 = [1 a [2 ]2 ]1,

R =
{

[
1
ar1 → [

1
ab, b[

2
r2 → [

2
b, r1[1 → [

1
r1, r2[1 → [

1
r2, r2[2 → [

2
r2

}

,

E = {r1, r1, r
2
2, λ, λ}, RE = ∅, iO = 1.

The behavior of this PBE system is described by the following sequence of
transitions:

η0 = r1[1a[2 ]2]1 →
r1[1r1a[

2
]
2
]
1
→

r2
2[1r1ab[2 ]2]1 →

[1r
2
2ab2[2 ]2]1 →

[
1
ab2[

2
r2
2]2]1 →

η5 = r1[1a[2b
2]2]1 →

r1[1r1a[
2
b2]

2
]
1
→

r2
2[1r1ab[

2
b2]

2
]
1
→

[1r
2
2ab2[2b

2]2]1 →
[
1
ab2[

2
r2
2b

2]
2
]
1
→

η10 = r1[1a[
2
b4]

2
]
1

→
. . .

(4)

In configuration η5 we note that the observable membrane again assumes
the value taken during the initial configuration η0. Since the environment
has started a new cycle of production in η5, the environment configurations
also again assume the value taken during the initial configuration. Hence, the
initial sequence of rules must repeat starting from η5, and so on, at every new
5-step cycle.

In conclusion, the system continues to cyclically repeat the same sequence
of transitions. Actually, it can be proved that the observable sequence {Xi}
generated by Π1 is eventually periodic with transient k0 = 0 and period k = 5.
In fact, the finite observable subsequence read along two configurations, η5n

and η5(n+1), n ≥ 0, is always equal to {a, a, ab, ab2, ab2} [4].

This example shows an intriguing analogy with a fundamental result com-
ing from linear system theory [16]. According to this result, the excitation
of a linear system with a pure sinusoid always produces, at the system out-
put, another (scaled and time-shifted) sinusoid having the same frequency as
the incoming one. In practice a transient is always present before the system
goes to a stationary condition. After this transient the output becomes purely
sinusoidal.

More formally, if we look at the linear system as an operator F mapping
time-domain functions into time-domain functions, or signals, then, if we inject
into it a purely sinusoidal signal

x(t) = Ax sin(ωxt + φx)
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having amplitude Ax, frequency ωx, and phase φx, then the system in its
turn responds with a sinusoidal signal having different amplitude and phase,
respectively Ay and φy, but the same frequency:

Ay sin(ωxt + φy) = F
[

Ax sin(ωxt + φx)
]

.

It can be shown for linear systems [16] that, in the case of purely sinusoidal
excitation, the amplitude of the (sinusoidal) output signal depends on the
resonance properties of the system: the closer the frequency ω of the sinusoid
to the resonance frequency Ω, the larger the amplitude of the output signal.

Although formally provable, this result has an immediate interpretation
in basic system dynamics. If we consider, for example, an extremely simple
linear dynamical system such as the pendulum, then it is easy to show that
this system has its own natural oscillation frequency that depends only on
its structural parameters (i.e., size and mass). This oscillation frequency is
the resonance frequency of the system and, in fact, making a pendulum oscil-
late out of its resonance frequency (i.e., forcing it to an unnatural oscillation
by repeatedly moving it with the hand, corresponding to injecting a “sinu-
soidal” non-resonant signal into the system given the limit of our capability
to reproduce a sinusoidal signal with our hand) becomes as harder as the
forcing sinusoid is farther from the resonance frequency. In more technical
detail, linear system dynamics tells us that in a second order linear system
having natural resonance frequency Ω (as the pendulum is), Ay will be as
much greater as the frequency of the input signal is closer to Ω. Equivalently,
we say that the system resonates at frequency ω = Ω [16].

The aforementioned properties also hold when the linear system is defined
in the discrete-time domain. In this case it can be shown that a similar re-
lationship involving discrete-time sinusoids exists between the system input
and output:

Ay sin(ωxn + φy) = FD

[

Ax sin(ωxn + φx)
]

,

where we have substituted the continuous-time operator F with the discrete-
time operator FD, and the continuous-time variable t with the discrete-time
variable n.

The environment cycle constantly feeds a PBE system with a sequence of
multisets that can be seen as a symbolic input signal. This signal is by all
means periodic (of period k) since it can be univocally encoded by a discrete-
time sinusoid having the same period. A general question arises: if a PBE
system is constantly fed by a periodic environment cycle, is the system output
(i.e., the content of the observable membrane) periodic as well and, if so, has
this periodical behavior any affinity with that of a linear system?

Membrane systems seem to have poor affinity to linear systems: it suffices
to say that they have structural analogies with the cell, which is definitely a
nonlinear system. Going into more technical details, we can straightforwardly
design a P system that, for instance, sends to the environment a periodic
sequence made of kS different symbols repeating forever, after it has been
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triggered by injecting the symbol S inside the skin, independently of any
further symbol injected into the system after the first one. This P system
has a clearly nonlinear behavior, as the period of its output is completely
determined by the initial symbol injected rather than by the symbolic input
sequence. Despite this, Example 1 describes a likely linear behavior in which
the system resonance is driven by the period of the environment cycle.

These clues, once put together, suggest a possible research direction aimed
at studying the system dynamics (in all its aspects of periodicity, chaos, and
so on) not only through the analysis of the trajectories drawn by the system,
as state transition dynamics does, but also by means of an analysis of the
structural properties of the system. Predicting at least to some extent the
dynamical behavior (either close to linearity, nonlinearity, nondeterminism,
etc.) of a membrane system by an evaluation of its structure would mark
a step forward in the application of P systems as models of biomolecular
processes.

4 Oscillatory Biochemical Systems

In this section we focus our attention on some biochemical processes that ex-
hibit periodic behavior. These processes are modeled by means of membrane
systems, whose objects are reinterpreted in terms of concentrations of biolog-
ical or chemical elements. Such membrane models are finally implemented on
a simulator, called Psim, running on a normal PC.

First, we will explain the structure of the simulator. Then, we will illustrate
some details of the algorithm it implements. Finally, we will discuss some
experimental results obtained by the simulation of three well known dynamical
systems.

4.1 Structure of the Simulator

Psim simulates a P system using the algorithm explained in Section 4.2. Its
structure is inspired from some existing software especially designed for the
simulation of P systems: the application developed in Prolog by Malita [22],
that emphasizes the execution speed; the simulator written in LISP by Suzuki
and Tanaka [36], particularly useful in long simulations of relatively simple
systems; the membrane simulator developed by Ciobanu and Paraschiv [8],
that is able to provide a graphical representation of the whole system through
time.

The main features of Psim are (1) a flexible definition of the membrane
structure via an XML file, (2) a user-friendly interface provided with printing
and graphical capabilities, and (3) the possibility to save and reload interme-
diate results.

The main screen of the simulator is depicted in Figure 1. It is divided into
three frames. The top frame contains two text fields, in which the user types
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Fig. 1. Screenshot of the simulator.

the largest number of elements allowed in a membrane, and the number of
simulation cycles; it also contains three drop-down boxes, allowing the user
to select the type of output graph. The frame in the middle displays the
computation results. The frame at the bottom contains four buttons, which
tell Psim to start a simulation, to print results, to save the system state, or
to exit.

The membrane structure is encoded into an XML file that is selected at
launch time, at the command line, and then loaded by the simulator. A mem-
brane is completely specified by a name, a position in the system, and a
multiplicity. Each membrane is made of three different regions: an internal
region called in, an external region called out, and, unlike previous imple-
mentations, a third region called inter. Similarly to the structure described
in Section 5, this is the part of the membrane that can contain receptors:
we can imagine it as an intermediate region located between the membrane
inside and the outside, separated from these two regions in a way that both
can see its content. This region, hence, can be used for interchanging objects
and for communication and, thus, it can be opened or closed to allow or in-
hibit communication, respectively. Each of these parts can contain objects, as
we will explain later, and also more membranes in such a way that the user
can design more complex structures. In the end Psim models a multiset of
membranes, each containing three (possibly empty) multisets of objects.
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The information on the topological structure of the membranes is followed
by the description of the objects that are initially present in the system.
These objects are associated with a name, a multiplicity and a reference to a
membrane containing them. The first two parameters are attributes of the tag
object of the XML file, whereas the information about the outer membrane
(thus, more generally, the information regarding the topology of the system)
is encoded by nesting corresponding object tags.

The last part of the input file is the description of the rule set. The syntax
describing such rules implements the notation of a PBE system (see Section 3).
Each rule is associated with a single membrane, e.g., it describes its evolution
by controlling the production of a subset of its objects, and is specified by a
name, a reactivity factor that alters the uniform distribution of probability in
the application of the rule, and a nonempty list of elements related to it.

These elements are of two kinds: reactants and products. Each is specified
by a name, a position within the membrane structure, and a reaction factor
(later on in this chapter we will talk about reactivities more extensively).

Intuitively a rule states that certain reactants take part in a reaction, with
proportions given by their stoichiometric coefficients. In this way they generate
corresponding products at a rate depending on some chemical and physical
factors. According to these ideas every XML tag describing an element of a
rule is composed of a reactant part and a product part. Each of these parts
has one attribute identifying the types of objects it refers to, one attribute
regarding the quantity of the objects, and a pair of attributes specifying the
position of the element in the system in terms of the membrane and its relative
region inside it. Together, these two parts indicate how a reactant transforms
itself into a product in terms of types of objects, position within the system,
and multiplicity.

This information, together with the reactivity coefficient of a rule, is the
only information our algorithm needs to compute the contribution of a reac-
tion in the production of an object over time. It is important to stress at this
time that with such a syntax it is possible to implement both communication
and transformation rules (according to the terminology used in Section 3).

Figure 2 contains a simple XML file that can be used as an input to the
simulator. All previously discussed points can be recognized to take part in
it.

From a theoretical point of view, and following the terminology proposed
in [27], the system we have implemented can describe every family of P
systems with m ≥ 1 membranes, both with or without priorities between
rules, catalysts, and various types of target indications. Features like dis-
solution, electrical charge, thickness, and permeability have not been imple-
mented yet, but the flexible backbone of our system would eventually al-
low their introduction. Formally speaking, we can model systems of the form
Pm(Pri, Cat, i/o, n±, nδ, nτ), where m > 0.

The simulator output consists of a series of graphs representing the objects’
multiplicity over time. The interaction between the user and the simulator is
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<rule name="R3" rho="1"  membrane="m1">

</rule>

</simulator>

</rule>
<rule name="R2" rho="1"  membrane="m1">

<rule name="R1" rho="1"  membrane="m1">

</rule>

<rule name="R5" rho="1"  membrane="m1">
<elem reactant="E" r_mult="1" r_memb="m1" r_zone="in" 

</rule>

<in>

<elem reactant="D" r_mult="1" r_memb="m1" r_zone="inter" 
 product="E" p_mult="1" p_memb="m1" p_zone="in"/>

<!DOCTYPE sistema SYSTEM "psim.dtd">

<simulator>

</in>
  <object name="E" mult="1"/>

<membrane id="m1" mult="1">

</membrane>

<?xml version=’1.0’ encoding=’utf−8’?>

<elem reactant="C" r_mult="1" r_memb="m1" r_zone="inter" 

 product="C" p_mult="1" p_memb="m1" p_zone="inter"/>

 product="D" p_mult="1" p_memb="m1" p_zone="inter"/>

 product="A" p_mult="1" p_memb="m1" p_zone="out"/>

<elem reactant="A" r_mult="1" r_memb="m1" r_zone="out" 

Fig. 2. Example of an XML file. It implements a simple set of impulses sent to

membrane m1 from the outside in the form of concentration of an object E. This

concentration goes repeatedly from 0 to its greatest allowed amount, then drops

down to 0, with a period of four simulation steps.

mediated by a simple Graphical User Interface (GUI) that helps the user to
write all the parameters needed by the simulation, and to select the graphs
that will be displayed after the computations.

Both the simulator and the GUI are written in Java, and are executed by
a Java virtual machine. This makes the simulator cross-platform. However, at
this stage of development the system dynamics in our simulator includes only
the production and the spatial movement of objects. We want to extend this
functionality, allowing the topological structure to change in time.
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4.2 The Metabolic Algorithm and Some Applications

The algorithm implemented by the simulator is inspired by a chemical reading
of the rewriting rules. Due to the biological implications of this type of reading,
we called the algorithm metabolic.

The reinterpretation of the rewriting rules in light of a specific application
is not new: several researchers have applied rewriting systems to contexts
different from a purely abstract one, giving alternative meanings to the rules
[2, 35, 37]. In P systems every rule can be seen as a binary relation between
strings, mapping the left argument to the right one. For instance, a rule r :
AB → CD containing symbols defined over an alphabet V states that every
occurrence of the object A ∈ V in the system, once paired with B ∈ V , can
be substituted with the new object pair CD ∈ V ∗.

If we look at r as a chemical reaction, then the objects on the left have
the role of reactants while those on the right are products. Following this
interpretation, we propose to look at rules as descriptors of the changes in
concentration of the reactants into products. In other words, r says that a
number of objects of type A and B transforms into objects of type C and D.
In this way we deal with populations rather than single objects.

This interpretation needs the introduction of some definitions. Consider a
P system on an alphabet V = {A,B,C, . . . }, provided with a nonempty set
R of rewriting rules. Every rule r : α→ β, with α, β ∈ V ∗, is associated with
a reactivity coefficient kr whose role will be made clear in the following.

For each membrane M we give a maximum number of objects, |M |, that
cannot be overcome. This parameter is related to the physical properties of
M , and we will call it the capacity of M . We define a conventional molarity
unit :

µ = ν |M | ,

where ν is the reaction factor, taking values between 0 and 1 (ν = 0.01 in
our experiments), which defines a fraction µ of the membrane capacity as the
reactive unit or, simply, mole.

Denoting with |X| the number of elements of type X in M , we define the
quantity

||X|| =
|X|

µ
(5)

as the number of moles of X inside M . This molar formulation for the quan-
tities involved in a reaction leads to the α-molar concentration, defined as the
product of the moles of every object in a string α = α1 . . . αl(α), l(α) being
the length of α [21]:

||α|| =

l(α)
∏

i=1

||αi|| . (6)

It is now possible to describe an algorithm that translates the rewriting
rules into a set of equations defining the molar variation, ∆||X||, of every
element X as a consequence of the application of the rules.
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A rule r : α→ β ∈ R acts on the left (i.e., reactant) and right (i.e., prod-
uct) objects: the left part of r diminishes the concentration of the reactants,
while the right part increases the concentration of the products. Hence, the
change in the amount of an element X in M due to r is equal to

|β|X − |α|X , (7)

where |γ|S indicates the number of occurrences of S contained in γ. Note that
this factor is independent of the concentrations; it “syntactically” ties the rule
to the object. Note also that the final balance for X can be either negative or
positive, depending on the specific reaction.

In chemical terms, r affects the concentration of every element appearing
in it by a similar contribution, depending on the concentration of all the
reactants at the time of application. The term ||α|| takes this aspect into
account, according to equation (6). Thus, we can compute the effect p(X, r)
of a rule r : α→ β on the concentration of X as

p(X, r) = kr (|β|X − |α|X) ||α|| , (8)

where kr is the reactivity coefficient of the rule. Therefore, p(X, r) is the
product of three factors: i) the reactivity kr; ii) the quantity (7), which plays
the role that stoichiometric coefficients have in chemical reactions; and iii) the
molar concentration (6) of the reactants.

In general, an object is present in more than one rule. In order to compute
the overall molar variation of an object X we have to take the contributions
of all rules into account. This is done by summing up their effects on the
concentration of X:

∆||X|| =
∑

r∈R

p(X, r), (9)

where R is the set of rules in our P system.
Hence, after the application of a set of rules our algorithm updates the

number of moles of an object X according to the following assignment:

||X|| := ||X||+ ∆||X|| . (10)

The multiplicity of X is updated accordingly:

|X| := |X|+ µ∆||X|| . (11)

Let us now see a concrete example of this translation from rewriting rules
to metabolic equations. Consider the set of rules

r1 : AC → AB,
r2 : BC → A,
r3 : BBB → BC,

(12)

each associated with a reactivity coefficient, respectively, kr1, kr2, and kr3.
We want to calculate the variation in the multiplicity of every object in the
system caused by the rules.
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If we apply equation (9) to each object, we obtain the following system of
metabolic equations:

∆||A|| = 0 · kr1||AC|| +1 · kr2||BC|| +0 · kr3||BBB||,
∆||B|| = +1 · kr1||AC|| −1 · kr2||BC|| −2 · kr3||BBB||,
∆||C|| = −1 · kr1||AC|| −1 · kr2||BC|| +1 · kr3||BBB||,

(13)

where kr1, kr2, and kr3 can be read as “rates” of application of r1, r2, and
r3, respectively. As we can see from (13), where all contributions (including
the null ones) are represented, it is always possible to figure out an equation
for every object of the P system from the corresponding set of rewriting rules.
Each of these equations gives the molar variation of the related element as
time elapses.

By applying equation (5) we can figure out the finite differentials associ-
ated with the system (13):

∆a = +µ · kr2

µ2 · bc,

∆b = +µ · kr1

µ2 · ac −µ · kr2

µ2 · bc −2µ · kr3

µ3 · b
3,

∆c = −µ · kr1

µ2 · ac −µ · kr2

µ2 · bc +µ · kr3

µ3 · b
3,

(14)

in which we have denoted numbers of elements with a, b, c instead of
|A|, |B|, |C|, respectively. Note that the correspondence between rewriting
rules and differential equations is not bidirectional: in general there is no
unique way to translate a system of differentials into a set of rewriting rules,
whereas the converse holds.

We want to emphasize some important facts about the coefficients kr. We
have seen that in the molar formulation of rewriting rules they are called reac-
tivities, and their role is to weigh each rule’s action. Reactivities take several
things into account. They model many physical parameters of the reaction
environment uniformly acting on the rules, such as pressure and temperature.
They also model other chemical parameters, not acting uniformly on rules,
such as the pH and the presence of catalysts or enzymes, supporting a reaction
that could not effectively take place otherwise.

The application of the reactivity factors in a P system should account for
the following:

• strategy of application;
• synchronization times;
• degree of parallelism;
• times and degrees of activation;
• reactants’ partition;
• energy partition;
• reaction rate.

If we consider all the interconnections existing between the points intro-
duced in the previous list, then it is easy to understand that the tuning of
reactivity factors is very important. We think it needs further investigation,
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and our future work will proceed along this line. For instance, it is important
to note that a change in the reactivity can be put in relation to the gran-
ularity with which we observe a reaction. This type of change has a clear
analogy with the tuning of the temporal step that controls the resolution at
which we observe the discrete approximation of the solution of a differential
equation (obtained using the Euler’s method, for example). Furthermore, the
discovery of algorithms reproducing specific dynamics that are observable in
nature might be useful in the tuning of the reactivities. This is something else
we want to investigate.

As previously seen, the multiplicity of X is updated according to (10)
after each system transition. Unfortunately it might happen that a rule is
applied too many times with respect to the reactant allowance, due to a wrong
choice of the reactivity coefficients. In other words, the system in principle can
consume more reactants than those available at a given configuration. This
violates the Principle of Mass Conservation.

To account for this, we add to our model a set of constraints that force
the system to respect the Principle of Mass Conservation. One possibility is
that for every object X, before calculating its molar variation ∆||X||, check
if the negative contribution on X due to the variation exceeds the amount
|X| calculated at the previous step; if so, then stop the computation, else go
on. Another possible work-around to a violation of the previously discussed
constraints is to decrease each reactivity value to a lower rate and then repeat
the check.

To clarify this, it is useful to illustrate the constraint set with a concrete
example. Consider the P system defined by the rule set (12). As discussed
before we associate the following constraints with each reactant, A, B, and C
– respectively, C|A|, C|B|, and C|C|:

C|A| : kr1||AC|| < |A|
C|B| : kr2||BC||+ kr3||BBB|| < |B|
C|C| : kr1||AC||+ kr2||BC|| < |C|

(15)

One may think that the constraint on an object X can be equivalently cal-
culated after the updating of |X|, by simply checking that it never assumes
negative values. Once more, this is the wrong approach. In fact, even if the
balance of positive and negative contributions results in an admissible varia-
tion, no one is able in this way to prevent the amount of X consumed by all
the reactions (i.e., those reactions including it among their reactants) during
a transition from exceeding its real amount. So, conditions such as (15) must
be checked before every transition.

Once a constraint violation has been discovered, there are several ways
to react. The investigation on how to do that is in progress. There are some
open questions in our model, and our future work will try to answer them. One
such question deals with the temporal variation of the reactivity parameters:
we think that setting these parameters free to vary with time would have a
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strong impact on the system behavior, enabling it to simulate reactions more
precisely.

At this stage the model is time invariant and the overall dynamical sys-
tem behavior depends completely on a vector I, of size n + m, containing n
normalized reactivities k1/kM , . . . , kn/KM (kM being the largest reactivity
coefficient), divided in turn by µ, plus m initial concentrations, a01, . . . , a0m,
of the elements a1, . . . , am, respectively:

I =
(

k1

µkM

, . . . , kn

µkM

, a01, . . . , a0m

)

. (16)

In other words, every reactivity coefficient can be expressed as a fraction of
the molarity unit as well as the largest reactivity, in a way that it is possible
to think at every coefficient as the result of two normalizations: i) a molar
normalization, accounting for the mass and time granularity of the reaction,
and ii) a kinetic normalization, accounting for the relative strengths of rules.

We have tested the algorithm with Psim, by simulating some well known
oscillating biochemical reactions. The first test has been conducted on the
Brusselator. This reaction occurs when certain reactants such as sulphuric
acid, malonic acid, ferroin, and bromate sodium are combined together in
presence of a cerium catalyst [33, 15, 37, 24].

After a period of inactivity, the resulting compound starts producing a
series of periodic changes in color ranging from red to blue. The corresponding
chemical reaction, according to the formula given in [37], can be symbolically
described in terms of the following rewriting rules:

r1 : A → X
r2 : BX → Y D
r3 : XXY → XXX
r4 : X → C

(17)

Usually, the assumption is made that the reaction is continuously fed by
the external environment. To account for this we provide the set (17) with
two further generative rules, whose role is to feed the system with reactants
A and B:

r5 : λ→ A
r6 : λ→ B

(18)

Starting from this extended set of rules, and assuming that every rule r has
reactivity kr, and then using the algorithm discussed previously, it is possible
to obtain the following set of metabolic equations:

∆||A|| = kr5 − kr1||A||
∆||B|| = kr6 − kr1||BX||
∆||C|| = kr4||X||
∆||D|| = kr2||BX||
∆||X|| = kr1||A|| − kr2||BX||+ kr3||XXY || − kr4||X||
∆||Y || = kr2||BX|| − kr3||XXY ||

(19)



106 L. Bianco, F. Fontana, G. Franco, V. Manca

Y - m1 - inter = X - m1 - inter = 
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Fig. 3. Oscillations of Belousov-Zhabotinskii reaction model simulated by Psim

with parameters k1 = 0.9, k2 = 0.7, k3 = 0.36, k4 = 0.36, k5 = 0.1, k6 = 0.15,

and µ = 1000 (|M | = 100000). Parameters can be rewritten as functions of k1 as

k2 = 0.78 k1, k3 = 0.4 k1, k4 = 0.4 k1, k5 = 0.11 k1, and k6 = 0.17 k1.

each describing the evolution of the concentration of the respective element.
The oscillating behavior of the BZ reaction turns, in the abstract system
expressed by (17) and (18), into corresponding oscillations in the number of
X and Y .

We have encoded rule set (19) into an XML input file, and fed this file to
the simulator. The number of X and Y as functions of time is plotted in Figure
3: the oscillating behavior of these functions is clearly visible. According to
the assumptions made in [35], initially all objects have multiplicity equal to
zero. Note that it is possible to normalize all the reactivity coefficients by the
largest reactivity (k1 in the example of Figure 3).

Prigogine and Nicolis [24] have studied a simpler dynamics of the BZ reac-
tion in terms of only objects X and Y . This formulation yields the following
system of differential equations:

x′ = k1 − k2x + k3x
2y − k4x

y′ = k2x− k3x
2y

(20)

depending on four parameters, k1, k2, k3, and k4. By expressing (20) in terms
of rewriting rules we obtain the following rewriting system, that can be viewed
as a simpler form of the Brusselator:
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r1 : λ → X
r2 : X → Y
r3 : XXY → XXX
r4 : X → λ

(21)

The associated molar equations are:

∆||X|| = kr1 − kr2||X||+ kr3||XXY || − kr4||X||
∆||Y || = kr2||X|| − kr3||XXY ||

(22)

where, as usual, every rule r has reactivity kr.
Equations (20) produce interesting behaviors depending on the reactivity

coefficients. As outlined in [24], when choosing in particular k1 = 100, k2 = 3,
k3 = 10−4, and k4 = 1, they originate the typical oscillating dynamics of the
Brusselator.

These values must be normalized to equate the dynamics obtained with
the differential approach with the dynamics obtained with the metabolic algo-
rithm. In fact, let us denote with ki the parameters characterizing the differen-

tial formulation, and with k
(m)
i the corresponding parameters in the metabolic

algorithm. The translation from the differential to the metabolic parameter
– refer also to (14) – is done for every rule according to the following molar
normalization:

k
(m)
i =

ki

µ1−l(α)
, (23)

where l(α) is the number of reactants in the rule to which the formula applies.
As we can see from Figure 4, the simulation of this model of the Brusselator

yields the same behavior described in [24] and [35] after molar normalization
of the parameters given in [24]. Moreover, by solving (20) with a well known
numerical integration method like Runge-Kutta [18] we have verified that
the correspondence between the differential approach and our algorithm also
holds when the parameters are chosen in a way such that no oscillations are
observed. All these correspondences existing between the results from our
simulations and those obtained using robust integration methods, like Runge-
Kutta, suggest that the algorithm implemented by Psim can certainly be
considered a reliable candidate for modeling this kind of system.

The second dynamical system we investigate is a simple predator-prey
model [15]. The model is formed by two objects evolving in time: preys, X,
and predators, Y . We make the following simplifying assumptions:

• the number of preys increases following a Malthusian model;
• the increase of preys reduces proportionally to the number of predators;
• predators extinguish in absence of preys since in that case they become

preys in their turn;
• predators increase proportionally to the number of preys.
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Fig. 4. Oscillations of the simplified Brusselator model simulated by Psim with

reactivities scaled by a factor 100: k1 = 0.001, k2 = 0.03, k3 = 1, k4 = 0.01, and

µ = 1000 (|M | = 100000). The initial cardinality of X and Y is set to 100.

This model is described by the Lotka-Volterra differential equations:

x′ = ax− dxy
y′ = exy − by

(24)

with initial conditions x0 > 0 and y0 > 0.
We can translate these differential equations into the following set of

rewriting rules (recall that x = ||X|| and y = ||Y ||):

r1 : X → XX
r2 : XY → Y Y
r3 : Y → λ

(25)

In this way we obtain the corresponding metabolic equations:

∆||X|| = kr1||X|| − kr2||XY ||
∆||Y || = −kr2||XY || − kr3||Y ||

(26)

The above rules and objects are contained into a system with just one mem-
brane.

We have simulated this system using an initial amount of 100 preys and
20 predators. The simulation, as we can see from Figure 5, confirmed the
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X - m1 - inter = Y - m1 - inter = 

O

17,19
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Fig. 5. Oscillations of the predator-prey model simulated by Psim with k1 = 0.01,

k2 = 0.02, k3 = 0.02, and µ = 100 (|M | = 10000).

oscillating behavior of the number of preys and predators in the predator-
prey model described by the Lotka-Volterra equation system.

The last model we discuss in this section is that of an infective disease
that spreads over a population, causing death or permanent immunity to the
infected. We make the simplifying assumption that the population is closed
(e.g., no births, immigration, or emigration are allowed) in a way that the
population can be partitioned into three different categories: healthy people,
C, ill people, G, and immune people, K.

When a healthy person meets an ill one he (or she) gets ill with a probabil-
ity expressed by the reactivity of the rule. An ill person has three possibilities:
he dies, becomes immune forever, or survives indefinitely, although ill. On the
other hand, a healthy individual maintains his state as long as he is not in
contact with an ill one. This system can be expressed by the following set of
rules:

r1 : CG → GG
r2 : G → K
r3 : G → λ

(27)

in which all the symbols have the meanings previously discussed.
It is now possible to write down the set of associated metabolic equations:



110 L. Bianco, F. Fontana, G. Franco, V. Manca

∆||C|| = − kr1||CG||

∆||G|| = kr1||CG|| − kr2||G|| − kr3||G|| (28)

∆||K|| = − kr2||G||

with the usual meanings of the reactivity parameters.
The simulation of this system with Psim has shown results that agree with

those found in the literature. In particular, it has highlighted the existence of a
threshold of activation for the epidemic: on the one hand, if the initial healthy
population is below a certain threshold quantity, the epidemic does not start
and, hence, ill people decrease in number until they vanish; on the other hand,
if the initial healthy population is beyond the threshold quantity, the epidemic
activates and the number of ill people grows to reach its maximum. Finally
this number goes back to zero and, thus, the epidemic vanishes.

As a result of our choice of parameters – reported in Figures 6 and 7 – it
turns out that the threshold of activation is around 2,570 (for more details on
its computation we refer, for example, to [18]); accordingly, we find two kinds
of behavior depending on the initial amount of healthy people; in Figure 6
the case is depicted in which the epidemic does not activate because of the
number of initial healthy people being 2,000, and, thus, less than the threshold;
in Figure 7 the initial number of healthy people is 7,000, and the epidemic
reaches a maximum, and then vanishes. In both cases the initial number of ill
people is equal to 300.

C - m1 - in = G - m1 - in = 

O

200

3O

400

6O

600

9O

800

12O

1000

15O

1200

18O

1400

21O

1600

24O

1800

27O

2000

30

N. cycles

Conc.

Fig. 6. Inactive epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 =

0.12, and µ = 3500.
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C - m1 - in = G - m1 - in = 

O
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24O
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Fig. 7. Active epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 = 0.12

and µ = 3500.

We end this section with some considerations that will guide our future
work. In particular, we will try to investigate carefully the molar normaliza-
tion, whose importance is emphasized by the following propositions.

Let E be a system of metabolic equations derived from a set of rewriting
rules, and let MA(E,µ) be the dynamics we get by applying the metabolic
algorithm MA using a molarity unit µ. Let us call Eµ the molar normalization
of equations E obtained by replacing every reactivity parameter ki in E with

k
(m)
i . Finally, let us call dE the differential form obtained by replacing, in E,

the finite difference operator ∆ with the differential operator, d/dt, and the
molar quantities with absolute quantities (that is, by setting µ = 1). If Euler
is the Euler’s approximation method for solving differential equations, then
the following proposition is easily proved.

Proposition 2. MA(E,µ) = Euler(dEµ) .

Nevertheless, the scale factor could be essential for the correct observation
of a system and, in computational terms, the scale factor should be relevant for
the reliability of numerical simulations. This is the case with Euler’s approx-
imation method. In fact, in general we have: Euler(d(E)) 6= Euler(d([E]µ)).
In the case of the oscillatory phenomena we studied – especially in the Brus-
selator as reported in [24] – we had the following experimental result.

Proposition 3. MA(E,µ) = Runge−Kutta(dE) .
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These propositions highlight the soundness of molar normalization. Fur-
thermore, the metabolic algorithm provides a versatile way to add initial con-
ditions in the form of numbers of objects, and nonlinear constraints in the
form of equations such as those seen in (15).

We are planning to carry out further theoretical and experimental work
for a better understanding of biological phenomena and for improving the
metabolic algorithm by means of a more systematic and practical use of molar
normalization. However, it is important to note that the metabolic approach
is likely to form a reliable basis for building up a discrete tool for the simu-
lation of the behavior of P systems. The next steps will entail extending the
dynamical approach to more complex membrane topologies, and to situations
where the reaction parameters vary in time under the influence of external
factors.

5 P Systems for Immunological Processes

The immune system represents a case of complex adaptive system where the
notion of cell membrane is essential. For example, in the description of phe-
nomena such as lysis or opsonization, that are processes by means of which
the bacterial membrane is destroyed and coated, respectively, we must be able
to formalize the concept of cell surface. P systems provide a versatile means
to describe the main processes happening in the immune system.

In spite of its complex nature and capability to rapidly adapt against the
attack of infectious agents, the immune system can be considered a typical
example of a distributed system [34], consisting of many locally interacting
components that provide global protection without any need for centralized
control. Moreover, the immune system is inherently dynamical, since the in-
dividual components circulating throughout the body are continually created
and destroyed. A dynamical study of P systems [4] – for example, from the
point of view of string transition dynamics, as reported in Section 2 – may
help in better understanding the relevant features of immunological processes.

In this section we analyze the basic aspects of the innate immune system
in order to discover structures of objects and types of membrane rules useful
for formalizing, in terms of membrane systems, the fundamental steps of the
primary immunological response. Then, a simplified version of the membrane
system for leukocyte selective recruitment [11] is simulated using Psim. We
will see that using certain parameters the experimental behaviors are well
reproduced. A formal description of the adaptive immune system is left to
forthcoming research.

A realistic description of the cell needs a richer structure than the one
defined for traditional P systems and their variations [28]. For example, we
need a representation of membranes that describes the recognition and pair-
ing mechanism between cells by means of “receptor-receptor” bonds. The sur-
face of many (in particular, immune) cells is covered with receptors, that are
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complex three-dimensional, electrically charged structures well visible from
the outside. The more complementary the structure and charge of receptors
belonging to two cells, the more likely the binding between such cells. The
receptor of a pathogen is called epitope, and the bond strength between a re-
ceptor and an epitope is called affinity. Receptors are deemed specific because
they tightly bind only to a few similar epitope structures or patterns.

The notion of a receptor, crucial in the cellular interplay occurring in the
immune system, has not been considered yet in the basic model of P systems.
In order to formally express this here, we use { [i instead of [i to indicate
a membrane, expressing with this notation the presence (between braces and
square brackets) of an interstice, intended as a region belonging to the external
surface where objects (receptors) are detectable from the outside and, in turn,
can detect objects in the external world. This feature can be considered as
an extension of the communication mechanism of PB systems [5] (refer to
Section 3) and symport/antiport P systems [26]. In fact, in PB systems x[iy
means that a membrane labeled i can see outside its boundary, in particular,
it can see an object x close to its external surface. Here we allow semi-internal
objects to be also are visible from the outside.

A second relevant matter is the introduction of rules that manage entire
membranes (including their contents) as objects. This approach is suitable
and realistic to express phenomena such as phagocytosis by macrophages and
diapedesis. In both the processes, microorganisms are engulfed and consumed
by immune system cells, and selected cells have to pass through tissues to
attack the infection.

Moreover, in order to describe adhesion between cells, that is, the cellular
complex obtained after bonds are created among respective receptors, we use
the following rule:

{p[a ]a} {q[b ]b} → {p q[a+b ]a+b}

where p represents the receptors of the membrane a, q represents the receptors
of the membrane b, and + is a special symbol for joining labels.

6 The Architecture of the Immune System

Some replicating pathogens constantly attack the body, and can be harmful
if left unchecked. Since different antigens have to be destroyed in different
ways, the problem faced by the immune system is to recognize them and to
choose the right tools for destroying a particular kind of pathogen. We can
associate all relevant biological properties that characterize the antigens with
the symbols of an alphabet A, and all the possible forms of epitopes with the
symbols of an alphabet E, so that a particular external microorganism can
be represented by {r[s ]s}

v, where s ∈ A?, r ∈ E?, and v ∈ {0,+,−}. The
charge associated with the membrane is neutral when the antigen is opsonized,
positive when it is replicating, and negative when it is not replicating.



114 L. Bianco, F. Fontana, G. Franco, V. Manca

To protect multicellular organisms from foreign pathogens – especially
those that replicate such as viruses, bacteria, or parasites – the immune system
must be capable of distinguishing harmful foreign material from normal con-
stituents of the organism, which we will indicate with a membrane [self ]vself

where v ∈ {0,+,−}. The charge associated with this membrane is normally
positive; it becomes negative when the self cell is infected, and neutral when
it is immune to the attack of antigens.

The recognition of an antigen as foreign in the immune system can be
seen as a problem of pattern recognition implemented by binding. For exam-
ple, lymphocytes recognize pathogens by forming molecular bonds between
pathogen fragments and receptors on the surface of the lymphocyte. The more
complementary the molecular shape and electrostatic surface charge between
pathogen and receptor, the stronger the bond (and the higher the affinity).
When an immune system detector binds to an antigen, we say that the im-
mune system has recognized the pattern encoded by the antigen.

To describe this kind of affinity between cells we define a function Rc that
measures the bond strength between receptors. If we call R the set of elements
representing all types of receptors (of self cells), we have:

Rc : {(x, y) | x ∈ R, y ∈ E} → N.

This definition can be extended to strings. In this case computing the value
of Rc becomes a hard problem, as it depends on structural and topological
cellular contraints. For this reason we avoid an explicit formulation of Rc for
strings.

We also need to define an affinity function between molecules (identified
with elements of a set Mol) and cell receptors, because a cytokine produces
its actions by binding to specific high affinity cell surface receptors (typically
in close proximity to where it is produced):

Rm : {(x, y) | x ∈ R, y ∈Mol} → N .

This is a general definition which, in the context of cytokine molecules, we
can restrict to a boolean function since cytokine receptors are associated with
the structurally unique family of receptors, termed JAKs, expressed by many
different cells. So, we can see Rm as the characteristic function on JAK × Y
where JAK ⊂ R is the subset of symbols associated with JAKs receptors.

The architecture of the immune system is multilayered, and it is provided
with defenses on several levels. The most elementary one is the skin, which is
the first barrier to infection. Another barrier is constituted by the physiological
conditions, such as pH and temperature, that provide uncomfortable living
conditions for foreign organisms [34]. We will describe these two levels as
more internal filter membranes [p ]p of a membrane system (see Figure 8).

Once pathogens have entered the body they encounter the innate immune
system and, then, the adaptive immune system. Both systems consist of a
multiplicity of cells and molecules that interact in a complex manner to detect
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and eliminate pathogens. The first system is that part of the immune system
we are provided with since our birth. It does not change, or adapt, to specific
pathogens and provides a rapid first line of defense to keep an early infection
in check, giving the adaptive immune system enough time to prepare a more
specific response. The term adaptive in fact refers to the part of the immune
system that learns how to recognize specific kinds of pathogens, and retains
memory of this for speeding up future responses.

Both detection and elimination depend on chemical bonds. The surfaces
of immune system cells are covered with various receptors; some of them
chemically bind to pathogens and some bind to other immune system cells or
molecules.
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Fig. 8. A membrane system for the immune system.

The membrane system we propose describes the principal steps of first
immune response. It contains two nested membranes representing the first
two levels of defense before the adaptive part of the immune system, located
in the environment: in Figure 8 the attack of antigens must be seen from the
inside to the outside of the system, because the most internal region represents
the external world, and the most external region represents the last, and more
specific, body defense. This choice is motivated by the increasing complexity
of the processes that must be described.

For the sake of simplicity, in the following discussion we do not close brack-
ets indicating corresponding membranes if not necessary. The most internal
membrane [p represents the body skin. It is a filter that selects, according to
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specific criteria, membranes that are labeled by strings in A?, and allows only
membranes which have labels belonging to a language L ⊂ A? to exit. The
region of the most external membrane [I represents the phase during which
the innate immune system is active. Only the pathogens that need a specific
action for being destroyed can pass through the membrane labeled I. Now we
see how the innate immune system attacks the antigens. We first introduce
some notation.

Complement molecules, together with macrophage cells, are respectively
the primary chemical and the phagocytic response of the immune system in
the early stages of infection. We split the complement molecules into two sets,
C1 and C2, because they are involved in two distinct phenomena, respectively,
lysis and opsonization. Lysis is the process by means of which the complement
molecule ruptures the bacterial membrane, the action resulting in the destruc-
tion of the bacterium. Opsonization refers to the coating of bacteria with the
complement molecules, causing the bacteria to be detected by macrophages.
By denoting the non-opsonized antigen with {r[s ]s}

v, where v ∈ {+,−}, and
the complement molecules with c1 ∈ C1, c2 ∈ C2, we will describe the above
phenomena, respectively, with the following rewriting rules:

c1 {r[s ]s}
v → c1 r′,

c2 {r[s ]s}
v → {r[s ]s}

0,

where r′ is a debris resulting from the destruction of the antigen, and the null
polarity represents the opsonization state. Self cells have regulatory proteins
on their surfaces, preventing complement molecules from binding to them. So,
they are protected against the effects of complement molecules.

Macrophages play a crucial role in all stages of the immune response.
In order to distinguish them by their two principal functions, i.e., to engulf
some specific bacteria (bacteria opsonized by complement), we indicate the
macrophages with two different types of membranes, respectively:

{ t [m ]m} [m ]m ,

where t ∈ R? is the string of cell receptors. Actually, macrophages have re-
ceptors both for certain kinds of bacteria and for complement molecules, but
this abstract description of macrophages contains all relevant aspects needed
by the dynamical system we are describing.

We associate the cytokine molecules with symbols belonging to Y . Cy-
tokines are molecules that act as a variety of important signals, and their
release activates the next phase of the host defense, called early induced
response. They are produced not only by macrophages and other immune
system cells, but also by some self cells (which are not part of the immune
system) when they are damaged by pathogens. Their major effect is to induce
an inflammatory response, associated with some physiological changes (fever)
which reduce the activity of pathogens and reinforce the immune response by
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triggering the production of acute phase proteins (APPs), substances which
bind to bacteria, thus activating macrophages or complement molecules.

When infected by viruses certain cells produce interferons, a family of
cytokines, so-called because they inhibit viral replication. Moreover, they ac-
tivate certain immune system cells called Natural Killers (NKs), that kill virus
infected self cells. We classify the interferons as elements of a subset I ⊂ Y ,
and the NK cells as membranes labeled nk:

[nk ]nk

NK cells bind to normal host cells, but they are normally not active because
healthy cells express molecules that act as inhibitory signals. When virally
infected cells cannot express these signals they are killed by activated NK
cells that release special chemicals that trigger the apoptosis (programmed
cell death) on an infected cell.

The overall validity of this representation must be verified in terms of its
capability to explain immunological dynamics. Psim applies rewriting rules
to objects taking into account their reactivity, i.e., the ability shown by such
objects (reactants) to meet (react) together. In particular, the concept of con-
centration used by Psim helps in formalizing a sort of substance (or cellular)
adjacency which is not defined in membrane systems. In fact, P systems are
topological spaces without a metric on objects. The existence of such a metric
can be important when dealing with cellular reactions.

Nevertheless, the notation used in membrane systems shows features that
are essential in the representation of immunological phenomena. Cells and
molecules in fact move around compartments; moreover, cells engulf objects
and in turn are engulfed by other cells. Likewise, agents change their internal
state, or their state of perception, with respect to the objects they meet, their
place, and their state.

7 Innate Immune System with Membranes

In the following discussion we propose a membrane system dealing with the
objects and membranes previously introduced, and provide them with suitable
rules.

Consider the following P system [10]:

(V, µ,R)

where V is the alphabet, µ is the initial configuration (where one can see also
the initial membrane structure of the system), and R is the set of rewriting
rules that extend the evolution and communication rules [28] by considering
also membranes having receptors, and managing membranes as objects.

Our system has the following alphabet:
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A ∪ E ∪ E′ ∪R ∪ C1 ∪ C2 ∪ Y ∪ {APP, d},

where A contains the biological properties of the antigen, E contains the
epitopes in all possible forms, E ′ contains the primed versions of the symbols
in E (this is useful to indicate the epitopes of the bacterium after it has
been processed by lysis), R contains the self cell receptors, C1 and C2 contain
the complement, Y contains the cytokines, and, finally, APP and d are two
special symbols needed to simulate the activation of macrophages and the
programmed death, respectively.

The system starts from the initial configuration (see Figure 8):

[I [self ]+self

ks

[nk]nk
kn y [m]m

km {t1[m]m}
k1

. . . {th[m]m}
kh [p {r1[s1

]s1
} . . . {rn[sn

]sn
} ]p ]I ,

where ks, kn, km, k1, . . . , kh are membrane multiplicities. Then, we have the
following rules:

• the starting rule simulates the entry of some antigens through the body
skin:

[p. . . {r[s ]s}
+ . . . ]p → [p]p {r[s ]s}

+ r ∈ E?, s ∈ L entrance

• once antigens have entered the body (from now on we will not write r ∈ E?,
r′ ∈ E′?, s ∈ L, c1 ∈ C1, and c2 ∈ C2 all the time) they induct the primary
response by replicating themselves and by infecting self healthy cells (which
switch from positive to negative polarity):

{r[s ]s}
+ → {r[s ]s}

+ {r[s ]s}
+ replication

[self ]+self {r[s ]s}
v → [self ]−self v ∈ {+,−} infection

• complement molecules, which are present in the region I, can thus act by
lysis and opsonization of some kinds of antigens, indicated by a string of
the set L̂ ⊂ L:

c1 {r[s ]s}
v → c1 r′ s ∈ L̂, v ∈ {+,−} lysis

c2 {r[s ]s}
v → {r[s ]s}

0 s ∈ L̂, v ∈ {+,−} opsonization

• macrophages act as scavenger cells (engulfing debris and opsonizing
pathogens), as process antigens (engulfing and digesting antigens, and then
presenting fragments of their proteins on the surface), and when activated
by bindings between receptors, as signal emitters (via cytokines) to the
immune system:
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r′ [m ]m → [m ]m debris remotion

{r[s ]s}
0 [m ]m → [m ]m opsonized antigen remotion

{t[m ]m} {r[s ]s}
v → {t s[m+s ]m+s} antigen-macrophage complex

{t r[m+s ]m+s} → {t r[m ]m} functionality restoration (with trace)

{t r[m+s ]m+s} → {t r[ms ]ms} y cytokine production by macrophages

where in the third rule v ∈ {+,−} and Rc(t, s) > 0, and in the fifth rule
y ∈ Y . In our notation one can distinguish whether the macrophages are
activated or not by the presence of the symbol + in their respective label;

• cytokines are probably the most important biologically active group of
molecules to identify; with hundreds of known cytokine-like molecules, it
is necessary here to restrict the discussion to a few key cytokines and
their most important properties, which include starting and maintaining
the inflammatory response. However it is clear that, being the common
signaling system for cell growth, inflammation, immunity, differentiation,
and tissue repair processes, cytokines are involved in many, if not all,
physiological functions.

Interferons, and in general cytokines, are produced in the adaptive im-
mune system by T cells and B cells, by activated macrophages, and by
endothelial cells of inflamed tissue:

[self ]−self → [self ]−self y y ∈ Y cytokines production by infected cells

Cytokines increase the number of macrophages and complement by pro-
duction of APPs:

y → y APP APP production by cytokines

APP → c1 c2 complement molecules increasing by APP

APP → [m ]m macrophages increasing by APP

They also increase the resistance of self cells against bacterial infection
(especially mycobacteria and certain viruses):

yk[self ]+self → [self ]0self self cells immunization by cytokines

where k ∈ N is a given number. Moreover, interferons (that are a special
class of cytokines) inhibit virus replication and activate NK cells, respec-
tively:

i{r[s ]s}
+ → {r[s ]s}

− i ∈ I virus replication/inhibition

i[nk ]nk → [nk i ]nk i ∈ I NK cell activation by interferons

Interferons are also produced by activated NK cells:
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[nki ]nk → j [nki ]nk i, j ∈ I interferon production by activated NK cells

Finally, activated NK cells induce programmed death in infected cells:

[nk i ]nk [self ]−self → [nk i ]nk [self d ]−self programmed death

[self d ]−self → d self cell death

d→ λ

These rules are not used as in P systems, but in the way of Psim, therefore
the process dynamics and effects are regulated at every step by the actual
quantities of reactants. Every dissolving membrane delivers its content to the
immediately outer membrane [29], and every dividing membrane replicates its
content inside the new membrane.

Due to its complexity, the description of the adaptive immune system and
its interaction with the innate immune system is left for the future. Priori-
ties between regions (and not between rules) might be established to simulate
different macro steps, in a way that some processes of the innate immune sys-
tem would activate with higher priority than those of the adaptive immune
system. This regulation might be performed more accurately by using reactivi-
ties. Since cells and substances are sent from the adaptive system to the innate
one as macrophages and antibodies acting as complement molecules, and as
cytokines, respectively, from now on we will suppose that the environment
periodically provides these materials [4].

8 Leukocyte Selective Recruitment

In an organism the first response against an inflammatory process consists of
the activation of a tissue-specific recruitment of leukocytes. Activation relies
on the complex functional interplay between the surface molecules that are
designed for specialized functions. These molecules are differently expressed
by leukocytes circulating in the blood, and by endothelial cells covering the
blood vessel.

Leukocyte recruitment in tissues requires extravasation from the blood.
Extravasation is made possible by a process of transendothelial migration,
and three major steps have been identified in the process of leukocyte extrava-
sation: (i) tethering-rolling of free-flowing white blood cells, (ii) activation of
the same cells, and (iii) arrest of their movement due to their adherence to
endothelial cells. After this arrest a phenomenon of diapedesis occurs; that is,
leukocytes move from the blood beyond endothelial cells toward the tissue.

A leukocyte cell has some receptors put on its surface that bind with
counter-receptors located on the surface of the endothelial cells. These bonds
slow down the initial speed of leukocyte. Moreover, some molecules, called
chemokines, are produced by the epithelium and by the bacteria that have
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activated the inflammation process. Chemokines can bind with the leukocyte
receptors, producing signals inside it. Such signals generate on the leukocyte
surface new and different receptors that, interacting with the endothelial re-
ceptors, strongly slow down the cell speed until it stops (see Figure 9).

E

E

C
c

Fig. 9. Leukocyte cell attacked by chemokines and endothelial receptors. C: leuko-

cytes; E: epithelium.

We call A the initial state with fast circulating leukocytes into the blood,
B the rolling state, C the activation state, and D the final adhesion state.
Therefore, the system evolves through three main phases:

1. A→ B, by means of some receptor-receptor interactions,
2. B → C, by means of some chemokine-receptor interactions, and
3. C → D, by means of some receptor-receptor interactions.

(refer to [11] for a description of a membrane system representing this immuno-
logical phenomenon; in that paper, ad-hoc notations have been introduced for
adding more realism to the model).

Here we analyze, using Psim, a simplified model of the system where only
a specific kind of leukocyte is present and the dynamics are ruled by only one
production of symbols. Accordingly, in this model receptor-receptor bonds are
not explicitly represented.

We use two membranes, labeled E and L: E represents the epithelium
entered and infected by the bacterium; L represents the leukocyte which in-
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teracts with the epithelium by producing or transforming symbols. Initially
we have one symbol b inside the membrane labeled E.

The process develops as follows:

• The antigen inside the epithelium produces chemokines and epithelial re-
ceptors externally, and copies of itself internally.

• Chemokines become internal signals inside the leukocyte (this process sim-
ulates leukocyte activation).

• The internal signals transform into leukocyte receptors, in two steps. When
a sufficient number of both epithelial and leukocyte receptors are present
in the system, then the elimination of the bacterium is triggered by the
production of a symbol v (this is an abstraction of the diapedesis phe-
nomenon [11]).

Consider the alphabet {b, c, p, q1, q2, s, v}. Here we will use the notation
adopted by Psim, with the obvious meanings of the rules presented below.
Initially, we have a symbol b representing the bacterium inside E. This bac-
terium replicates, and all its copies have to be definitely destroyed:

k1 : (b, E, in)→ (bb, E, in)

The presence of b produces symbols c, representing the chemokines outside E,
and symbols p, representing the epithelial receptors on the surface of E. We
decided upon a rate of three copies of c and two copies of p for each copy of b:

k2 : (b, E, in) → (c3, E, out)(b, E, in)

k3 : (b, E, in) → (p2, E, inter)(b, E, in)

The chemokines c outside membranes become symbols s, representing internal
signals inside membranes labeled with L. Moreover, s is ‘slowly’ transformed
into q2, representing leukocyte receptors, by moving trough a transformation
into five copies of q1:

k4 : (c, E, out) → (s, L, in)

k5 : (s, L, in) → (q5
1 , L, inter)

k6 : (q1, L, inter) → (q2, L, inter)

Finally, the presence of both p and q2 – respectively representing epithelial
and leukocyte receptors – activates the production of a symbol v inside E,
where each copy of b is deleted by the presence of v.

The problem is to regulate the reactivity values k1, . . . , k8 to correctly
modulate the application of rules, i.e., to neutralize the infection. As one can
see in Figures 10, 11, and 12, setting k1 = 1, k2 = 1, k3 = 0.8, k4 = 0.7, k5 = 1,
k6 = 0.2, k7 = 0.8, and k8 = 1 lets the immune response work soundly, as it
destroys all copies of replicating b.

Note that the infection decay (e.g., the decreasing amount of b inside
E) corresponds to the increasing activation of leukocytes (e.g., amount of s
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Fig. 10. The amount of b (representing the quantity of infection) inside E (the

inflamed epithelial tissue) and s (internal signals as immune responses) inside L

(leukocyte cell) after 18 applications of the rules; the membrane maximum capacity

is equal to 10
6
.

inside L), as is well known from immunological studies [34]. Also, when the
infection disappears, the production of s slows down quickly, as can be seen
in Figure 10. Moreover, the production of epithelial receptors is higher than
the production of chemokines, as in real immunological processes, and the
chemokines’ behavior follows the amount of b plotted in Figures 11 and 12.

The application of the rules at each computational step is dictated by the
principles outlined in Section 4. In this case we have the following differentials:

∆b = |b| −
|b||v|

µ
,

∆c = 3|b| − 0.7|c|,

∆p = 2 ∗ 0.8|b| − 0.8
|p||q2|

µ
,

∆s = 0.7|c| − |s|,

∆q1 = 5|q1| − 0.2|q1|,

∆q2 = 0.2|q1| − 0.8
|p||q2|

µ
,

∆v = 0.8
|p||q2|

µ
.
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Fig. 11. The amounts of b (antigens), c (chemokines), p (epithelial receptors) after

16 applications of the rules; the membrane maximum capacity is equal to 10
6
.

9 Conclusion and Future Directions

This chapter describes theoretical facts as well as experiments and applications
we have recently dealt with during our investigation of the dynamics of P
systems. The leading idea of this investigation has been that of looking at P
systems not as machines which in front of an input produce a corresponding
output (provided they reach a final configuration), but, rather, as systems
capable in principle of reproducing a wide spectrum of dynamics, including
those pertaining to molecular processes.

If we resolve, for example, the Brusselator reaction expressed by (17) using
the metabolic graph drawn in Figure 13, then we somehow emphasize in the
associated P system a sort of “neuron-like” membrane structure (according
to Păun’s terminology).

Such a “neural” representation of a P system can be immediately extended
to any membrane structure by making a proper use of labels. In this way any
membrane system takes on the aspect of a dynamical network, i.e., a graph
whose nodes have a state that at every temporal step depends on the state
of other nodes, and whose nodes and edges can be added and/or removed
dynamically.

It is easy to discover that a dynamics can present oscillatory behaviors only
if the associated graph contains cycles. In general, finding parameters that
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Fig. 12. The quantities of b (antigens), c (chemokines), and p (epithelial receptors)

after 19 applications of the rules; the membrane maximum capacity is equal to 10
7
.

A B D

YXC

R1

R6

R2

R4 R3

R5

Fig. 13. Brusselator’s Metabolic Graph.

translate into oscillations is not easy. The inverse oscillation problem can be
stated in the following way: given a metabolic graph, find initial concentrations
and reactivity parameters (i.e., a collection of values for I as defined by (16))
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that cause oscillations. At the end of Section 3 we have seen that in the case
of linear systems the solution is well established.

Future research will investigate algorithms capable of attacking this prob-
lem. Related to this investigation will be the search, on metabolic graphs, for
system parameters having a dynamical relevance. Though many suggestions
on these topics come from the theory of cellular automata and Kauffman net-
works [17, 38, 39], a lot of theoretical analysis and experimental work has
nevertheless still to be done in this direction.
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F. Sancho-Caparrini, eds.), 53–59.

2. G. Bellin, G. Boudol: The Chemical Abstract Machine. Theoretical Computer

Science, 96 (1992), 217–248.

3. F. Bernardini, M. Gheorghe: Cell Communication in Tissue P Systems and

Cell Division in Population P Systems. In Proc. Second Brainstorming Week

on Membrane Computing, Seville, Spain, February 2004 (Gh. Păun, A. Riscos-
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29. Gh. Păun, G. Rozenberg: A Guide to Membrane Computing. Theoretical Com-

puter Science, 287 (2002), 73–100.
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Summary. We present a probabilistic simulator of P systems that implements the

evolution-communication model proposed in [8] enriched with some probabilistic

parameters inspired by cell biology. After describing the software and its work-

ing, we compare the mathematical model with the biological reality of the cell.

Then, we present some biological applications showing how one can use this soft-

ware to simulate simple but interesting biological phenomena, related to respiration

in Escherichia coli and the interaction between respiration and photosynthesis in

cyanobacteria. The present chapter is an extension of the work presented in [5].

1 Introduction

In this chapter we present a probabilistic software simulator for a P system
model and we show how it can be used to approach some biological processes
and to study new mathematical problems.

Membrane computing is a branch of natural computing which starts from
the idea that a formal computing device can be abstracted from cell func-
tioning. Since this model has been introduced, [15], many papers have inves-
tigated the computational and mathematical aspects of membrane systems
(also called P systems, from the name of its creator). For an up-to-date bib-
liography of P systems the reader can consult the Web page [27].

In this chapter, we address a different class of questions: we try to compare
the mathematical model with the biological reality, indicating how one can
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use the P system framework (and in this case the software simulator) to model
very important processes that occur in cells.

In Section 2 we give an overview of evolution-communication (EC) P sys-
tems, recalling the idea of the model and the main definitions.

In Section 3 we present, in a general way, the software which simulates
(probabilistic) EC P systems, together with a short description of its working.

In Section 4 we present the simulation of a very simple probabilistic P
system, while Section 5 is dedicated to a comparison between the features
of the mathematical model and the biological reality. In this way we try to
establish a link between the mathematical framework, the simulator realized,
and the biological reality, introducing new concepts in the P system area and,
at the same time, comparing the standard concepts of membrane computing
with what we have in cell biology.

Finally, in Section 6 we show how it is possible to use the mathematical
model, and therefore the software, to simulate different situations of impor-
tant biological processes; in particular, we simulate the process of respiration
in Escherichia coli and Synechocystis PCC6803, the corresponding proton
pumping by cytochrome c oxydase in Anacystis nidulans, and the interplay
between oxygen consumption and oxygen production by photosynthesis II
(PSII) in Synechocystis PCC6803 in the presence of a specific synthetic in-
hibitor of PSII. We also show how to interpret the results obtained in a way
as to infer useful results for biologists.

This work has been done in the framework of P systems because we be-
lieve that the emergence of P systems, together with its collaboration with
biologists, could be as important and fruitful for biology as the introduction
of physics and chemistry almost two centuries ago.

2 Definitions

For an introduction to P systems we refer the reader to the monograph [16],
and to the Web page [27]; for the essential cell biology elements we refer the
reader to [1]; we also use some (very) basic elements of formal languages here:
the reader can consult the classic book [26] for more details.

We recall here the definition of the particular model (evolution-
communication) of P systems, for which we have also realized a simulation
software package (for the probabilistic case). This model has been proposed in
[8] and its motivation is rooted in the idea to separate the evolutive mechanism
of the cell (chemical reactions described by rewriting rules) from the commu-
nicative mechanism (passage of chemical objects through the membranes of
the cell described by the so-called symport/antiport rules). In an evolution-
communication P system the evolutive mechanism and the communicative
mechanism can work simultaneously and independently.

The formal definition of an evolution-communication P system is as fol-
lows:
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Definition 2.1 An evolution-communication P system (in short, an EC P
system) of degree m ≥ 1 is a construct

Π = (Σ,µ,w1, · · · , wm, R1, · · · , Rm, R′

1, · · · , R
′

m, i0),

where Σ is the alphabet of symbol objects, µ is a membrane structure with
m regions, labeled 1, · · · ,m, and i0 ∈ {0, · · · ,m} is the output region (the
environment if i0 = 0).
Every region i ∈ {1, · · · ,m} has:

• wi ∈ Σ∗, a string representing a multiset of symbol objects from Σ;
• Ri, a finite set of evolution rules over Σ of the form u → v, for u ∈ Σ+

and v ∈ Σ∗;
• R′

i, a finite set of symport/antiport rules over Σ of the forms (a, in),
(b, out), and (b, out; a, in), for a, b ∈ Σ.

In other words, we can say that the evolution-communication P systems
consist of a membrane structure µ (that follows the fluid-mosaic model pro-
posed in [24]) composed of several membranes hierarchically embedded in
a main membrane called the skin membrane. The membranes delimit re-
gions and each region can contain symbol objects (that represent chemical
objects), and each symbol object can be present in many occurrences (i.e.,
many molecules). For this reason a multiset of symbol objects is associated
with each region (a multiset is a set where each element is associated with its
number of occurrences, described by a natural number).

Each occurrence of the symbol objects evolves according to given evolution
rules (that represent chemical reactions, i.e., biochemical transformations)
associated with the regions and described by rewriting rules.

At the same time, in the evolution-communication P systems we have
the communication rules represented by symport/antiport rules that simulate
some of the biochemical transport mechanisms present in the cell.

The transport of molecules and chemicals (symbol objects) across mem-
branes is one of the fundamental functions of a cell and its study in bacteria
(as well as in other living cells) is under strong development (for more in-
formation the reader is advised to consult [7, 13, 23]). The transport can be
passive or active. The transport is passive when molecules (symbol objects)
pass across the membrane from the compartment with a higher concentration
to that with a lower concentration, and, in this case, there is no metabolical
energy used for the transport. An example of passive transport is the entry of
oxygen molecules by diffusion into the cell of Escherichia coli bacteria or the
exit of carbon dioxide outside the bacterium. These two passive processes are
both important for the aerobic respiration in Escherichia coli, as we will show
later. The transport is active when molecules pass across the membrane from
a compartment with a lower concentration to one with a higher concentration.
In this case, it is necessary to expend some metabolical energy to accomplish
the transport.



132 M. Cavaliere, I.I. Ardelean

For example, during the process of respiration in Escherichia coli, the
protons are transported across the cell membrane, from the inner space (de-
termined by the cell membrane) to the periplasmic space (external space). In
such a way a difference in the concentration of protons across the cell mem-
brane is established (more protons in the periplasmic space and less in the
inner space of the cell) and this is a chemical form of energy (so-called pro-
ton motive force, described in [13]). These protons are used for symport and
antiport transport of chemicals.

The symport of different substances needed for bacterial growth is very
well documented in [10]. For example, Escherichia coli uses the symport of
protons with either lactose, arabinose, or galactose. A classical example of
antiport mechanism is the proton/sodium antiporter found in many bacteria,
where the main function of this antiporter is the maintaining of a (quite)
constant concentration of either protons or sodium ions inside the cell, [14].

The application of the rules of either type (evolution and symport/antiport
rules) of an EC P system is made in a nondeterministic way (the rules to be
applied are chosen randomly) and in a maximally parallel way (at each step all
objects that can be moved or evolve must do so). The process is synchronized
(there is a global clock marking the time units and it is common to all the
regions of the system). In this way we get a sequence of configurations (an
instantaneous description of the system) that defines a computation of an
evolution-communication P system. From a mathematical point of view it
is interesting to study the halting computations, that is, the computations
which reach a configuration where no rule (neither an evolution rule nor a
symport/antiport rule) is applicable.

Here, we consider any computation (halting or non-halting) of an
evolution-communication P system as corresponding to the biochemical trans-
formations and transport processes in a living cell; on the other hand, in our
case, the presence of an output region of a P system is not relevant.

3 The Software

The software we have realized is able to simulate the behaviour of an evolution-
communication P system as described earlier. Moreover, the simulator, using
the weak priority approach, solves the conflicts that can appear when the rules
choose the symbol objects; the weak priority can be seen as a competition of
the rules for each single occurrence of the objects.

In what follows we explain the software in more detail; in the next section
we will discuss, from a biological point of view, the implementation choices.
The simulator takes as an input the rules of the P system to simulate (evolu-
tion rules and symport/antiport rules), the structure of the model (actually,
the structure is not limited to a tree, as customary in the P systems field,
but is permitted to be a graph), and the occurrences of the symbol objects
present at the beginning of the computation in the regions of the P system.
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Also, we must specify for each rule r two kinds of probabilities: the prob-
ability to be available (we call it Pavr) and the probability to win a conflict
(we call it Pwinr); actually, as we will see below, the simulator computes this
second probability using an integer coefficient, Cwinr, fixed for each rule r.

The simulation takes place in the following way. At each step, the simu-
lator decides which rules are available, and this decision is taken using the
probability Pavr fixed for each rule r. These probabilities are independent of
each other and they express the probability of each rule being available for
the application at a step.

After this choice, the simulator solves conflicts present among available
rules, using the probability Pwinr that indicates the probability of the rule
r winning a conflict over a symbol object with other rules; in this case the
probability Pwinr is calculated for each conflict and depends on the coefficient
Cwinr associated with r and on the coefficients of the other rules involved
in the same conflict: in this way, for each conflict, a probability distribution
among the rules involved in that conflict is produced. If ri, i = 1, · · · , k, are
the rules involved in a conflict over a symbol object, then Pwin is calculated,
for each ri, i = 1, · · · , k, as follows:

Pwinri
= Cwinri

/(Cwinr1
+ · · ·+ Cwinrk

),

for i = 1, · · · , k.
Finally, when every conflict has been resolved, the rules are applied in

parallel in each region, as is usual with P systems.

3.1 How the Software Works: A Simple Example

The best way to explain the working of the software is to discuss a simple
example.

Suppose we have a simple P system composed of one membrane (labeled
1) and in this region there are the evolution rules r1 : a→ aa, r2 : b→ a, and
r3 : aa → a; The first rule r1 says that one occurrence of the symbol object
a is replaced by two occurrences of the same symbol object, r3 is exactly the
opposite, and the second rule means that one occurrence of the symbol object
b is transformed into one occurrence of the symbol object a. In region 1 (at the
beginning of the computation) there are 10 occurrences of the symbol object
a and one occurrence of the symbol object b.

Moreover, we suppose that Pavr1
= 0.8, Pavr2

= 0.2, and Pavr3
= 0.6,

and, Cwinr1
= Cwinr3

= 100, and Cwinr2
= 40.

At each step, the simulator chooses the available rules in region 1 and the
choice is made using the probabilities Pappri

, i = 1, 2, 3. These probabilities
imply that at some steps the available rules might be different from those
at the previous steps, and there might be rules that are chosen more often
than others (their Pav is bigger than the probabilities of the other rules).
After constructing the list of the available rules, the simulator must solve the
conflicts that, at this point, might be present in the region.
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Suppose that, at some step, the list of available rules is composed of r1 :
a→ aa and r3 : aa→ a.

At this point, the simulator searches for possible conflicts on the occur-
rences of the symbol objects present in region 1.

In our case, there are conflicts because both rules can use the symbol
object a. Then, the simulator starts to assign each occurrence of a in region
1 to one of the two rules involved in the conflict.

For this goal one uses the probability Pwinri
calculated for each rule from

the coefficient Cwinri
associated with the rule ri; actually, in our case, the

probabilities are computed in the following way:

Pwinri
= Cwinri

/(Cwinr1
+ Cwinr3

), i ∈ {1, 3}.

In this example, the probability is the same (0.5) for both rules involved in
the conflict. Using such probabilities, each occurrence of object a is assigned.
When a rule wins the other, it takes the number of occurrences of objects
that it needs (two for r3 and one for r1). In this way, when there are no more
conflicts, the rules can be applied in parallel. For example, in our case suppose
that r3 wins the first conflict against r1; then r3 can take the two occurrences
of a that it needs; in this way, the occurrences which remain to assign are
eight. Now, there are still conflicts to solve, so the process continues in the
same way.

Suppose that, at the end, six occurrences of a are assigned to r1 and four
to r3; after applying the rules in parallel, the new number of occurrences of a
in region 1 is 14. To clarify the idea of the working of the simulator, we discuss
the previous example step by step, starting from the initial configuration. The
P system is

Π = ({a, b}, [1 ]1, a
10b,R1), with

R1 = {r1 : a→ aa, r2 : b→ a, r3 : aa→ a}.

Moreover, we have that

Pavr1
= 0.8, Pavr2

= 0.2, Pavr3
= 0.6,

Cwinr1
= Cwinr3

= 100, Cwinr2
= 40.

Step 1: List of rules available
The simulator decides which are the available rules in this step. Suppose

that, using the probabilities Pav, the simulator chooses the rules r1 and r3.
Then, the list of available rules in this step of computation is L = {r1, r3}.

Step 2: Searching for conflicts in region 1
The number of occurrences of a is 10. There are conflicts among the rules

in the list L (in this case, both rules can use the symbol object a).
Step 3: Solving the conflicts
The simulator solves the conflicts by assigning, using the probabilities

Pwin, the occurrences of a to the rules involved in the conflicts.
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In this case, Cwinr1
= Cwinr3

= 100 and hence Pwinr1
= Pwinr3

=
100/200 = 0.5; therefore, in this case the two rules have the same probability
of winning a conflict in which they are involved.

Suppose that, for example, the rule r3 wins the first conflict; therefore,
two free occurrences of a are assigned to this rule. Now, there are eight more
occurrences of object a to assign. There are still conflicts, so the simulator
repeats, in a similar way, step 3 until all the conflicts are solved.

Step 4: All conflicts in region 1 have been solved
Suppose that all the conflicts in region 1 have been solved and suppose,

for example, that six occurrences of a are assigned to r1 and four to r3.
Step 5: Execute the rules
When the objects have been assigned the simulator executes the rules

present in the membrane, in parallel, according to the assigned objects. In
particular, after the execution of the rules, we will have 14 occurrences of
object a and one occurrence of the object b.

Step 6: Repeat the same process for a new step of computation (it starts
again from step 1, where a new list L of available rules is created).

In this example, we had only one membrane, but if the P system to simulate
has many membranes, then the same algorithm is applied to each membrane of
the system, and only when each occurrence of each symbol object is assigned
(or, at least, the simulator has tried to assign it) are the rules executed in
parallel in each region, as is usual in P systems.

4 A First Probabilistic Simulation: Is Life
Unpredictable?

In this section, we show the results of a first experiment, consisting of the
simulation of a very simple EC P system. This simple experiment clarifies
the working of our simulator and it is interesting because of the unexpected
results and because it reminds other systems (in different fields) where similar
phenomena appear.

The P system that we have simulated is:

Π = ({a}, [
1

]
1
, a, R1), with

R1 = {r1 : a→ aa, r2 : aa→ a}.

This P system is composed of one region (with label 1) and of two simple
evolution rules, r1 and r2. The first rule duplicates the occurrences of symbol
objects a, while the second rule does the opposite: it reduces to half the
number of occurrences of a.

We fix Pavr1
and Pavr2

= 0.8; this means that r1 and r2 have the same
probability of being available at each step of the simulation. Also, we take
Cwinr1

and Cwinr2
= 100; this means that, if there is a conflict between r1

and r2, both the rules have the same probability of winning the conflict.
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The two rules of the system can be considered as describing associations
(r1 : a → aa) and dissociations (r1 : aa → a) of molecules, and this reminds
us of the importance of these phenomena for the origin of life on earth [12,
25]. Thus, the models and software package as considered above can also be
related to the important subject of origin of life (whatever “life” means in this
framework). Moreover, from a formal language point of view, it is natural to
ask about the link between systems as above and some kinds of Lindenmayer
systems (formal language devices inspired by biology, [22]) with probabilistic
behavior.

Even if the system constructed could seem very stable (all the probabilities
are equal), the results (the number of occurrences of symbol object a present
in the system during the evolution – we can say, metaphorically, during the
life of the system) of this experiment are quite surprising. The behaviour of
the system seems very unstable, and we notice large variations of the num-
ber of occurrences of a during the computation, with many large jumps (see
Figure 1). Roughly speaking, we can think that, for this simple system, with
these coefficients and probabilities, we can expect any kind of behavior; this
makes it very hard to make predictions on the behavior. The picture in Figure
1 very well represents the controversial results of this experiment (the num-
ber of copies of a is indicated on the y axis and the number of the steps on
the x axis). Moreover, we have noticed that, the lower we fix the probability
for the two rules to be available,the more unstable (with larger jumps) the
system becomes. We think that the study of this (simple) system could be a
good starting point to understand more about the dynamics of probabilistic
P systems.

Some simple questions arise here: is it possible to make some kind of
prediction about the behaviour of this system? Are there other systems (also
in different fields like biology, economics, etc.) that behave in a similar way
and that can be modeled by a similar model?

5 Mathematics and Biology: A Comparison

In this section we try to clarify the link between the software mentioned
before and some basic elements of cell biology. Moreover we show in which
way many fundamental concepts present in biology have been translated to the
underlying mathematical model, and, therefore, introduced in the software.

We will also discuss several concepts not (yet) introduced in the P system
area, but clearly related to the biological processes studied here.

We start this comparison speaking about the model of P systems imple-
mented. This is based on the evolution-communication model, where we do not
have indications for communications, but the transport of chemical substances
is done using the symport/antiport rules (that can simulate the biochemical
transport mechanisms present in the cell). In this model we can have symbol
objects and particular objects called catalysts already well studied in the P
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Fig. 1. The simulation of a simple probabilistic EC P system.

systems area [16]: in particular, a catalyst corresponds to what in bioloy is
usually called enzyme, and it is used to catalyze chemical reactions (in other
words, to permit the chemical reactions to occur).

Moreover, in the software, the conflicts among the rules (chemical reac-
tions) when using some common symbol objects (chemical substances) are
solved using the weak priority approach. Using this approach all the chemicals
present are assigned to the available reactions (according to some biological
parameters) and, if a reaction that is stronger than another cannot be applied
(for many reasons, the main one being the lack of some necessary chemicals),
then a reaction with a lower priority can be applied.

Now, we discuss the biological relevance of the two probabilistic parameters
used in the software: the probability of being available and the probability of
winning a conflict assigned to each rule.

Probability of being available: In a cell, it can happen that all the chemical
substances needed for a chemical reaction are present but the reaction does
not take place. Why? This fact is very important in biology and it is related
to many possible factors. For example, in case of the process of respiration
of bacteria, the factors that stop a chemical reaction are the inhibition of
synthesis of some enzymes, the presence of inhibitors like potassium cyanide,
the quantity of oxygen or bound hydrogen, etc. We need a probabilistic device
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to represent this phenomenon. The idea is to use the probability of being
available, which indicates at each step whether or not a rule (a reaction) is
available, independently of the presence of symbol objects (chemical objects)
needed.

Probability of winning a conflict: It can happen that two different chemical
reactions (two different rules) catalyzed by two different enzymes (catalysts),
need the same chemical object (for example, oxygen in respiration). In this
case, at low concentrations of this chemical, there could be a conflict among
the reactions using the chemical. The conflict will be won by the reaction that
is catalyzed by an enzyme with a higher affinity for the chemical (we notice
that the affinity of an enzyme with a certain chemical substance can change
according to some parameters, such as the presence of regulatory substances).

In other words, we can say that the strength of a reaction to win a conflict
is related to the strength of the enzyme that catalyzes this reaction, and we can
represent the strength of the different reactions (rules) using the probability of
winning a conflict associated with each rule.

Another concept present in biology (and not yet considered in the P sys-
tems area) is the activity rate of an enzyme. An enzyme, as already mentioned,
is used to catalyze a chemical reaction present in a cell (in a region), and the
speed of this enzyme is called activity rate. The formal biological definition of
the activity rate of an enzyme, taken from [17], says that this rate is measured
by determining the amount of substrate converted per unit of time, under ex-
actly defined and strictly controlled conditions. In other words, the activity
of an enzyme is the number of reactions that it can catalyze in a fixed unit of
time (the chemicals consumed by such reactions are called substrate). Every
type of enzyme has its own activity rate, and this can change in time accord-
ing to biological parameters dependent on the particular chemical reaction
considered.

Usually, in biology the activity rate of an enzyme is calculated for the total
quantity and not for single occurrences (single molecules). The international
unit of enzyme activity (named katal) is the quantity of enzyme that converts
one mol (the quantity in grams numerically equally to the molecular weight of
the molecule) of substrate in one second. In practice one utilizes the milikatal
or the nanokatal, for the quantity of enzyme that converts one milimol or one
nanomol of substrate (for details, see [17]).

In the P systems area, it is usually assumed that each symbol object
has the same velocity (we can say the same “activity rate”: at each step,
each occurrence is used, if possible, in one reaction); if we consider enzymes
(catalysts in the P systems area) with different activity rates, then we can
have a different mathematical model; in this case not all the objects proceed
at the same velocity, but, at the same step different kinds of catalysts can be
used in a different number of reactions (rules). This means that, in general,
for each object o, it is important to consider the number of rules (chemical
reactions) where it can be used at one single step, and we will call it so (speed
of an object); different kinds of objects can have different speeds.
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Another feature present in biology (and which could be introduced in the
mathematical model) is the activity of an enzyme: in fact, a molecule (an
occurrence) of an enzyme can be present but not active (this means that the
molecule of the enzyme is present in the cell but it cannot be used to catalyze
any reactions). Then, by activity we mean the capacity of an enzyme to help
the catalyzed reaction to occur.

We can look at the activity of an enzyme of a certain kind in this way:
we have a fixed number of occurrences of such enzyme in the cell (for exam-
ple k molecules) and part of these occurrences are active and the remaining
occurrences are not active.

Only the occurrences of an enzyme that are active can be used to cat-
alyze the reaction, and the number of active occurrences change according to
some biological parameters. For example, enzymes are inhibited, reversibly
or irreversibly. The effect of irreversible inhibitors is to reduce the amount of
enzymes available for the reaction; their effect cannot be overcome by sim-
ple physical techniques such as washing out. On the other hand, reversible
inhibitors combine with the enzyme in such a way that in general they can be
easily removed.

It is easy to observe that, changing the number of active occurrences of an
enzyme, it is possible to control the general activity rate of the enzyme itself,
and, therefore, the rate of the catalyzed reaction.

Finally, we would like to introduce the concept of closed and open systems.
Open systems can exchange energy and chemical objects with the environment
while closed systems can exchange only energy and not chemicals. Being open
systems, living organisms continuously obtain energy and materials from the
external environment and eliminate the end products (for example, carbon
dioxide produced by the respiration process) of their metabolism [11].

Sometimes, to study various processes occurring in living cells, the cells
are closed in some measuring device; for example, to study the oxygen con-
sumption by a suspension of cells, the cells are closed in an oxygen electrode
chamber and the decrease in the concentration of the molecular oxygen (as a
result of the respiration) is monitored by a so-called Clark-type electrode.

6 Modeling Some Biological Processes

In this section we describe how some important biological processes, such as
the respiration process in Escherichia coli and the interactions between res-
piration and photosynthesis in cyanobacteria, can be modeled and translated
in the P systems framework, and, how, in this way, using the simulator, it
is possible to obtain results that can be useful for biologists. Also, we intend
to illustrate with a realistic example what we have discussed in the previous
section.
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6.1 Modeling the Respiration in Bacteria

Respiration is the biological process that allows cells (from bacteria to hu-
mans) to obtain energy. In short, respiration promotes a flux of electrons
from electron donors to a final electron acceptor, which in most cases is the
molecular oxygen.

In Escherichia coli, as well as in other bacteria, the cell ability to consume
molecular oxygen during the respiration is determined by the presence of two
different enzymes that catalyze the final step of respiration: the reduction of
molecular oxygen with protons and electrons.

In Escherichia coli, these two terminal oxydases (enzymes) – called termi-
nal because they are the last components of the respiratory electron transport
pathways – are cytochrome bd and cytochrome bo. The occurrence of multiple
(two or more) terminal oxydases enables the cell to modulate its respiration,
in accordance with its energy requirements and the availability of chemicals
in the environment [21].

For example, in Escherichia coli cytochrome bd has high affinity for oxygen
and is involved in energy conversion with medium efficiency: more precisely,
for every electron (passed through the cytochrome bd to molecular oxygen)
one proton (one atom of bound hydrogen without its electron) is transported
from the inside to the outside the cell.

Thus, because of its higher affinity for oxygen, the cytochrome bd “works
more” at a relatively low oxygen concentration in the growing medium.

On the other hand, the cytochrome bo oxidase has a lower affinity for
oxygen. Thus, cytochrome bo works at a higher oxygen concentration in the
growing medium; however, it has greater efficiency in energy conversion.

Recently, Alexeeva et al. [2, 3] studied the relationship between the oxygen
concentration in the growing medium and the activity rate of the two terminal
oxidases, including the flux of electrons to molecular oxygen through each of
the two pathways.

Simply, but correctly (for more details the reader can consult the papers
cited above), we can say that, at low oxygen concentration in the growing
medium (lower than about 40% of oxygen saturation) the cytochrome bd oxy-
dase is responsible for the entire respiratory activity of the cells; in other
words, the flux of electrons to molecular oxygen proceeds 100% through the
cytochrome bd oxydase. At high oxygen concentration in the growing medium
(between 90% and 100% of oxygen saturation), the cytochrome bo oxydase
is responsible for almost the entire respiratory activity of the cells. Further-
more, between 40% and 90% of oxygen saturation, the two types of terminal
oxidases contribute together to the respiration of the cell.

Now, we show how to translate this biological reality into the P systems
framework so that it is possible to use the simulator.

We know that in Escherichia coli the consumption of molecular oxygen is
made using two different chemical reactions catalyzed by two different kinds
of enzymes: bo and bd (for simplicity of notation we call bo E ′′ and call bd
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E′). The activity rate of these two enzymes is different, according to the
percentage of saturation of molecular oxygen: this means that the activity
rate of the enzymes determines how many chemical reactions catalyzed by
such enzymes occur in a fixed time unit.

The two reactions can be represented as

E′AB → CE′, E′′AB → CE′′,

where E′′ and E′ are the two enzymes that catalyze the two reactions, B is
the molecular oxygen (consumed by the two reactions), A is the hydrogen,
and C is the molecular water produced.

As we can see, both the chemical reactions consume oxygen and hydrogen
but the activity rate of the two reactions will be different, according to the
concentration of oxygen (substrate of the reaction) in the cell, because it de-
pends on the activity rate of the enzymes E ′ and E′′ (which, in turn, depends
on the concentration of oxygen in the cell, as discussed earlier). Moreover,
only the occurrences of an enzyme that are active can be used to catalyze
the reaction, and the number of active occurrences change according to some
parameters (in this case, the concentration of oxygen).

It is possible to control the activity rate of the enzymes E ′ and E′′ by
controlling the number of active occurrences of the enzymes in the cell. In
other words, it is possible to simulate the increasing (decreasing) of the
activity rate of an enzyme by increasing (decreasing) the number of active
occurrences of the enzyme in the cell.

In reality, this is only a biological hypothesis and the situation is not very
clear; in fact, using intact cells it is very difficult to measure simultaneously
the activity of an enzyme and its quantity. For example, we do not know if
the changes in the activity rate of an enzyme are related to changes in the
quantity of active enzymes (this means that there is a larger quantity of active
enzymes, but the activity rate of the single occurrence remains the same) or
happen in the activity rate of every single enzyme, but the quantity of active
enzymes remains the same.

However, for our purpose at this stage, the biological hypothesis can be
taken as true. Then, by using experimental and mathematical results given
by the software, we can check the truth of this biological hypothesis.

Finally, we have to observe that at a low concentration of oxygen there
could be conflicts among the two reactions using this chemical; these conflicts
must be resolved by using the different affinities of the two enzymes with re-
spect to the oxygen, and this means using the probability of winning associated
with the two rules, as discussed earlier.

6.2 Simulating the Respiration Process in Bacteria

In this subsection we show how one can use the simulator to model the process
of respiration in Escherichia coli described in the previous subsection and
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how, in this way, we can have some useful results for biologists. Initially we
consider only one of the two reactions that take place in Escherichia coli
during respiration, and we try to detail and to simulate it using the software.

In particular we consider a system where only the first enzyme e′ (cy-
tochrome bd) is present. It is known (see, e.g., [17]) that the activity of an
enzyme can be expressed as the activity of each unit enzyme and the quan-
tity of substances involved in the reactions can be given in nanomols. Then,
using units of enzyme and nanomols, the chemical reaction introduced before,

E′AB → CE′,

must be rewritten in a more precise way

E′AkBj → CiE′. (1)

This means that one unit of the enzyme E ′ (cytochrome bd) catalyzes
a reaction that consumes k nanomols of hydrogen (A) and j nanomols of
oxygen (B), producing i nanomols of water (C). Actually, for the purpose of
this experiment, we are interested only in the consumption of oxygen, and we
can see the reaction in the following simpler way:

E′Bj → E′.

From [17] we know that one unit of enzyme E ′ consumes (more precisely, we
should say, “catalyzes the reaction that consumes”) 42 nanomols of oxygen in
one hour. We must specify that this is the activity rate of the enzyme when the
concentration of oxygen (substrate) is between 40% and 60% of saturation,
and we suppose this as true for our experiment. Moreover, we suppose that
our system is closed (no oxygen is introduced from the environment). Using
these data we can rewrite the chemical reaction in the following way:

E′B42 → E′.

This way we have made the translation from biological reality to mathe-
matical model: now each occurrence of the symbol object E ′ represents one
unit of enzyme cytochrome bd, each occurrence of the symbol object B repre-
sents one nanomol of oxygen, and each step of the P system is one hour (the
time unit of the activity rate of the enzyme).

Now we can simulate the consumption of oxygen in the respiration process
of Escherichia coli using the software on the following simple P system:

Π = ({E′, B}, [1 ]1, (E
′)kBj , R1), with (2)

R1 = {E′B42 → E′},

where Papp is 1.0 for the rule in R1 (we suppose the reaction is always avail-
able and that Pwin is not relevant here because there is only one rule).
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In the formal definition of the P system, we have left as parameters the
number of occurrences of nanomols of oxygen (j) and the number of unit
enzymes (k) present at the beginning of the experiment; changing the values
of this parameters, we can run different experiments for different biological
situations.

An immediate application for our simulator is to have diagrams of the
consumption of oxygen, changing the quantity k (expressed in units) of enzyme
cytochrome bd used. In other words, we are interested in looking at how
much “faster” the oxygen decreases using different quantities of enzymes.
This way we can check in a real experiment what quantity of enzymes we
have used by looking at what extent the consumption obtained in laboratory
is “similar” to the simulation. Of course, the verification of the “similarity”
can be automated, using the software and checking online the quantity of
enzymes used in an experiment. We illustrate this application with a simple
practical example.

In Figure 2 is shown the simulation of the P system described before,
where the consumption of oxygen is reported when the quantity of enzyme
used is 1/10 of aunit of enzyme (1), 1/6 of a unit of enzyme (2), 1/2 of a unit
of enzyme (3) and exactly 1 unit of enzyme (4).

Fig. 2. Consumption of oxygen in Escherichia coli using only cytochrome bd.
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On the x axis is given the time (in hours) of the experiment, while on the
y axis is given the quantity (in nanomols) of oxygen present in the cell; the
initial quantity of oxygen is 220 nanomols, and this corresponds to saturation
of the cell; for this first step and for the goal of our experiment we can, as an
approximation, assume that the activity rate of the enzymes used is constant
in the time (we have to remark that, in practice, the activity rate of the
enzyme changes according to the concentration of oxygen).

Now we want to consider the consumption of oxygen in Escherichia coli,
where only the second enzyme (cytochrome bo) is present.

Using units to express the quantity of enzyme cytochrome bo and nanomols
for the quantity of oxygen and hydrogen, the reaction for the consumption of
oxygen is:

E′′AkBj → CiE′′.

This formula is interpreted exactly as the formula described in (1) except for
the fact that the enzyme used here is E ′′, indicating the cytochrome bo.

Again, because we are interested only in the consumption of oxygen, the
reaction can be simplified and written as:

E′′Bj → E′′.

From [17] we know that 1 unit of enzyme E ′′ (cytochrome bo) consumes
(i.e., catalyzes the reaction that consumes) 66 nanomols of oxygen in 1 hour.
As in the previous experiment we assume that the concentration of oxygen
(substrate) is between 40% and 60% of saturation.

We also assume that no oxygen is introduced from the environment into
the system considered. Using these data we can rewrite the reaction for the
consumption of oxygen in the following way:

E′′B66 → E′′.

Each occurrence of the symbol object E ′′ represents one unit enzyme of
cytochrome bo, each occurrence of the symbol object B represents one nanomol
of oxygen, and each step of the P system is one hour.

The consumption of oxygen in the respiration process of Escherichia coli
when only cytochrome bo is used can be studied running the simulator on the
following P system:

Π = ({E′′, B}, [
1

]
1
, (E′′)kBj , R1), with (3)

R1 = {E′′B66 → E′′},

where Papp is 1.0 for the rule in R1 (we suppose the reaction is always avail-
able and that Pwin is not relevant here because there is only one rule).

As in the case of cytochrome bd considered earlier, we present in Figure 3
the diagram representing the consumption of oxygen when the quantity of
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Fig. 3. Consumption of oxygen in Escherichia coli using only cytochrome bo.

(the unique) enzyme cytochrome bo used is 1/10 of a unit of enzyme (1), 1/6
of a unit of enzyme (2), 1/2 of a unit of enzyme (3) and exactly 1 unit of
enzyme (4), starting with an initial amount of oxygen of 220 nanomols.

Now we consider the consumption of oxygen in Escherichia coli when both
the enzymes cytochrome bo and cytochrome bd oxydase are present. In this
case the two enzymes are somehow “concurrent”: both the enzymes catalyze
the consumption of oxygen. Because the oxygen is a common resource for the
two enzymes, the ability of an enzyme to catalyze the consumption of oxygen
is related to its affinity, as discussed in Section 6.1.

From [2, 3] we find out that when the oxygen present is 220 nanomols, the
affinity of the enzyme bo with respect to oxygen is almost eight times larger
than the affinity of the enzyme bd.

Now we can simulate the consumption of oxygen in the respiration process
of Escherichia coli using the software on the following simple P system ob-
tained by “composing” the two P systems previously considered in (2) and (3).

Π = ({E′, E′′, B}, [1 ]1, (E
′)k(E′′)pBj , R1), (4)

R1 = {r1 : E′B42 → E′, r2 : E′′B66 → E′′},

where Papp is 1.0 for the rules in R1 (we suppose the reactions are always
available).

The two rules r1 and r2 compete for the use of the oxygen B. Such conflicts
are solved using the probability to win that simulates the affinity of an enzyme
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and works in the way described in Section 3. Therefore we fix the coefficients
Cwin of the two rules in R1 such that, in case of conflict, the probability of r2

to win a conflict is eight times larger than the probability of rule r1 to win.
We fix the parameters k, p, and j and then run the simulator with the

initial quantity of oxygen fixed at j = 220 nanomols; we obtain Figure 4 that
represents how the consumption of oxygen changes if only 1/5 of a unit of the
enzyme bo is used (3), only 1/5 of a unit of the enzyme bd is used (1), or the
enzymes bd and bo are used together (1/10 of a unit each) (2). Notice that the
difference between the cases when the enzymes are used separately and when
they are used together is not large; when the two enzymes are used together
the speed of the consumption of oxygen is approximately half of that when
only the enzyme bo is used and double of that when only the enzyme bd is
used. In practice, a stronger difference can be noticed when the quantity of
oxygen available is very low and the affinity of the two enzymes becomes a
fundamental parameter.

Fig. 4. Consumption of oxygen in Escherichia coli using cytochrome bo and bd.
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6.3 Pumps in Escherichia coli

As already discussed in Sections 2 and 5, proton pumping is fundamental for
biological energy conservation.

In Escherichia coli the consumption of molecular oxygen is related to the
translocation (pumping out) of protons outside the cell.

Specifically, cytochrome bd oxydase translocates one proton for every elec-
tron transported to molecular oxygen. Following the data presented in [2, 3],
we conclude that 42 nanomols of protons are pumped out, using one unit of
enzyme bd oxydase.

In the case of cytochrome bo oxidase, two protons are translocated for
every electron transported to molecular oxygen. This means that, from the
data presented in [2, 3], 132 nanomols of protons are pumped out in one hour
using one unit of enzyme bo oxidase.

Formally the following P system represents the situation where only con-
sumption of molecular oxygen and translocation of protons are taken into
consideration and where only the enzyme cytochrome bo oxidase is present.

Π = ({E′′, O, P}, [1 ]1, E
′′kOj , R1, R

′

1), with (5)

R1 = {E′′O66 → E′′P 132},

R′

1 = {(P, out)},

where Papp = 1 for both rules (the reactions are always available; Pwin is not
relevant here because there are no conflicts between the rules); each step of
this system corresponds to 60 minutes. Each occurrence of the symbol object
O corresponds to one nanomol of molecular oxygen; each occurrence of the
symbol object P corresponds to one nanomol of protons, and each occurrence
of the symbol object E′′ corresponds to one unit of enzyme cytochrome bo
oxidase. The consumption of molecular oxygen is simulated using the evolu-
tion rule in R1 while the translocation of protons toward the environment is
simulated using the symport rule present in R′

1.
Figure 5 represents the accumulation of protons in the environment when

1/10 of a unit of enzyme is used and 220 nanomols of molecular oxygen are
initially present in the cell.

The diagrams from Figures 2, 3, 4, and 5 can be used to obtain biologi-
cally significant results. For instance, suppose that for an experiment we take
exactly 220 nanomols and a certain quantity of the enzyme cytochrome bo.
Suppose we observe that after 20 hours of respiration the Escherichia coli still
contains (around) 140 nanomols of oxygen (this can be measured in a lab).
Then, looking at the diagram represented in Figure 2 we can understand that
the quantity of enzymes present in the cell is around 1/10 of a unit (the same
idea can be applied to the other diagrams obtained).

In this case the calculation is quite easy, but the same idea, together with
an improved version of the simulator, can be adapted easily to calculate, on-
line, the quantity of enzymes used when the activity rate of each enzyme
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Fig. 5. Translocation of protons in Escherichia coli using cytochrome bd.

changes during the experiment according to the concentration of the oxygen
substrate.

Moreover, in future investigations one can consider processes where the en-
zymes cytochrome bo and cytochrome bd oxydase are involved in the following
interesting situations:

(i) Decreasing of oxygen concentration: The oxygen concentration decreases
from saturation toward zero. In this case, both the reactions (rules) can be
applied; both enzymes are present in the cell, with different activity rates
and different affinities that change according to the oxygen concentration.

(ii) Increasing of oxygen concentration: This is dual to case (i): the oxygen
concentration increases from zero toward saturation.

(iii) Constant oxygen concentration: In this case, the oxygen concentration is
maintained constant (at a chosen value, between 10% and 100%). More-
over, the activity of the two enzymes is fixed, according to the chosen
concentration of oxygen, and the system is not closed (as in the cases
considered in our experiments) but is fed with oxygen.

Finally, an interesting experiment could be the measurement, using the
simulator, of the activity and the quantity used of each enzyme and, based
on previous experimental knowledge, the determination of either oxygen con-
sumption and/or oxygen concentration in the growing medium. This last ap-
plication could especially be of real practical interest both in academic studies



Modeling Respiration in Bacteria 149

and in bioindustrial activities, because, while oxygen measurements are usu-
ally carried out (both in academia and industry), enzyme activity (or enzyme
quantity) cannot be measured in intact cells. These measurements are very
laborious and time consuming (and for this reason the online control of bioin-
dustrial processes is practically impossible at this level). The online knowledge
of enzyme activity and enzyme quantity in bioindustrial processes can enable
the online optimization (with respect to cost, production of useful chemicals,
etc.) of such processes.

6.4 Modeling Respiration-Photosynthesis Interaction in

Cyanobacteria

Cyanobacteria are the largest and most diversified important group of
prokaryotes [19], defined by the ability to carry out both oxygenic photosyn-
thesis (within the thylakoid membranes) and respiration (within the plasma
membranes and thylakoid membranes) [19], [20]. In this section and in Sec-
tion 6.5 we will consider for our simulations the cyanobacterium Synechocystis
PCC 6803.

In brief, the overall process of photosynthesis consists of using electrons
from water to ultimately reduce carbon dioxide, producing some chemicals (for
example, carbohydrates). This process is essential for life on earth, generating
the main food source for almost all living cells and the only source of the
molecular oxygen needed for respiration.

The first reaction in photosynthesis is the splitting of water (at the expense
of light energy, not presented here for simplicity) to produce molecular oxygen,
protons, and electrons [9].

The last reaction of the respiration process is the opposite of the first
reaction that occurs in photosynthesis; this means that in respiration water is
produced by the consumption of oxygen during its combination with protons
and electrons, as in Escherichia coli.

In cyanobacteria there is strong interaction between respiration and pho-
tosynthesis; for example, the oxygen produced by photosynthesis in the inner
membrane (thylakoid membrane) is used in the cell membrane for the process
of respiration, [18, 20], and, at the same time, the carbon dioxide produced by
respiration in the cell membrane is used (recycled) in the inner membrane for
the process of photosynthesis. For simplicity, we can say that oxygen produc-
tion (by the photosynthesis process) is catalyzed by only one type of enzyme
(actually, this is called oxygen-evolving complex, [9]) and the last step of res-
piratory oxygen consumption in cyanobacteria is catalyzed by the enzyme
cytochrome c oxydase [20].

From the data presented in [6], the photosynthetic oxygen production is
of 26 nanomols of oxygen per microgram of chlorophyll in 10 minutes, while
oxygen consumption in respiration is of five nanomols of oxygen per microgram
chlorophyll in 10 minutes. The carbon dioxide production in respiration is of
five nanomols per microgram chlorophyll (present in the cyanobacteria) in
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10 minutes, while the carbon dioxide consumption in photosynthesis is of
26 nanomols of carbon dioxide per microgram chlorophyll in 10 minutes. We
have to notice that the more detailed the data, nearer the simulation results to
biological reality; for our purpose, in this case, the data expressed in nanomols
and micrograms have good precision. The system considered here is closed:
there is no exchange of chemicals with the environment, and this means that
oxygen and carbon dioxide are not introduced in the system. We suppose, for
simplicity, that we have inexhaustible quantities of water and light.

Then, in a formal simplified way, we can represent the process of respiration
and photosynthesis in cyanobacteria with the following EC P system:

Π = ({c,O,D}, [
1
[
2

]
2
]
1
, ckOj , clDm, R1, R2, R

′

1, R
′

2), with (6)

R1 = {cO5 → cD5},

R2 = {cD26 → cO26},

R′

2 = {(D, in), (O, out)},

where Papp = 1 for each rule in R1, R2, R
′

2 (we suppose the reaction is always
available and that Pwin is not relevant here because there are no conflicts
between the rules) and each step of the system corresponds to 10 minutes.

The system is composed of two membranes labeled 1 and 2 that repre-
sent the cell membrane and the thylakoid membrane, respectively. In the two
regions there are the symbol object c (each occurrence of c represents one mi-
crogram of chlorophyll), the symbol object D (each occurrence of D represents
one nanomol of carbon dioxide), and the symbol object O (each occurrence
of O represents one nanomol of oxygen).

In region 1, between membranes 1 and 2, we have the simple evolution rule
cO5 → cD5 that represents the last step of the respiration that occurs in the
cell membrane. In particular, the rule says that, in one step, five occurrences
(nanomols) of O (oxygen) are consumed, using one occurrence (microgram)
of chlorophyll c, and five occurrences (nanomols) of D (carbon dioxide) are
produced. In region 2, there is the simple evolution rule cD26 → cO26 that
represents the oxygen production by photosynthesis that occurs in the thy-
lakoid membrane. In particular, the rule says that in one step, 26 occurrences
(nanomols) of D (carbon dioxide) are consumed, using one occurrence (mi-
crogram) of chlorophyll c, and 26 occurrences (nanomols) of O (oxygen) are
produced.

In our general model we did not fix the quantity of O (oxygen), D (carbon
dioxide), and c (chlorophyll) that is present in the cell at the beginning of the
simulation, and we can apply the same model for different experimental data.

In the first simulation we take at the beginning 1 microgram of chlorophyll,
300 nanomols of oxygen in the cell membrane and 0 nanomols of oxygen in
the thylakoid membrane, and 500 nanomols of carbon dioxide in the thylakoid
membrane and 0 nanomols of carbon dioxide in the cell membrane. The result
of the simulation of this system is given in Figure 6.
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Fig. 6. Oxygen (cell membrane) and carbon dioxide (thylakoid membrane) in

cyanobacteria (first simulation).

We can observe that after some time (in this case after 23 steps, or 230
minutes) the oxygen stops to accumulate at around 770 nanomols; after about
80 minutes we have the same amount of oxygen in the cell membrane as carbon
dioxide in the thylakoid membrane.

In the second simulation we consider a system that does not contain any
oxygen at the beginning, and we want see how it is able to produce oxygen and
when the accumulation of oxygen stops. In particular, we take at the beginning
one microgram of chlorophyll, 0 nanomols of oxygen in the cell membrane and
0 nanomols of oxygen in the thylakoid membrane, 450 nanomols of carbon
dioxide in the thylakoid membrane and 0 nanomols of carbon dioxide in the
cell membrane.

The result of the simulation of this system is given in Figure 7.
We can observe that after some time (about 21 steps, or 210 minutes)

the accumulation of oxygen stops at around 440 nanomols; after about 110
minutes we have the same amount of oxygen in the cell membrane as carbon
dioxide in the thylakoid membrane.

The simulation presented in Figure 7 corresponds to the situation where
the cyanobacteria are in a medium without molecular oxygen, and this situ-
ation is of practical interest because it easily occurs in laboratory or natural
environments in conditions of prolonged darkness. When the light is turned
on (step 0) then the photosynthetic activity starts in the cyanobacteria. The
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Fig. 7. Oxygen (cell membrane) and carbon dioxide (thylakoid membrane) in

cyanobacteria (second simulation).

results presented in Figure 7 permit us to predict the time after which the oxy-
gen stops to accumulate (with no oxygen at the beginning) and the quantity
of molecular oxygen in the cell.

We want to stress again the fact that the systems considered in the two
previous experiments are closed and oxygen is accumulated both in the liq-
uid and the gaseous phase (for simplicity, in our simulation we did not take
into account the well known inhibition of photosynthesis by the increasing of
oxygen concentration).

For the future, we plan to add more details to the system, considering also
other kinds of interactions existing between the two membranes, and, at the
same time, the presence of regulatory mechanisms that are able to change the
activity rate of the photosynthesis and respiration processes.

Moreover, we also plan to verify the stability of the system when it becomes
open to interaction with the environment (to the introduction of oxygen or
carbon dioxide from the environment) and to express the activity of the reac-
tions in more specific and detailed terms; for example, the respiration activity
can be expressed in micrograms of the specific enzyme used by cyanobacteria
(cytochrome c oxydase).
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6.5 Using an Inhibitor

In cyanobacteria it is possible to inhibit the production of oxygen during pho-
tosynthesis by adding a synthetic chemical inhibitor called diuron commonly
used as herbicide. In particular, using diuron in low concentration it is pos-
sible to decrease the production of oxygen by 50%, while the consumption of
oxygen is not modified.

That means that we can rewrite the P system considered in (6) in the
following way:

Π = ({c,O,D}, [
1
[
2

]
2
]
1
, ckOj , clDm, R1, R2, R

′

1, R
′

2), with (7)

R1 = {cO5 → cD5},

R2 = {cD13 → cO13},

R′

2 = {(D, in), (O, out)},

where Papp = 1 for each rule in R1, R2, R
′

2 (we suppose the reaction is always
available and the Pwin is not relevant here because there are no conflicts
between the rules) and each step of this system corresponds to 10 minutes. The
components of the P systems can be interpreted exactly as in the case of the
P system represented in (6); we can observe that in this case the production of
oxygen by photosynthesis is decreased by half because of the addition of the
inhibitor. It is interesting then to repeat the simulations described in Section
6.4 (whose results are presented in Figures 6 and 7) using this new P system.

In the first simulation we take, at the beginning, 1 microgram of chloro-
phyll, 300 nanomols of oxygen in the cell membrane and 0 nanomols of exygen
in the thylakoid membrane, and 500 nanomols of carbon dioxide in the thy-
lakoid membrane and 0 nanomols of carbon dioxide in the cell membrane. The
result of the simulation of this system is given in Figure 8.

We can notice that after about 12 steps (i.e., after about 120 minutes) the
quantity of oxygen present in the cell membrane is the same as the amount of
the carbon dioxide present in thylakoid membrane (without using the inhibitor
diuron this situation occurs after about 80 minutes; see Figure 6). On the other
hand, we can see that after 600 minutes the oxygen stops to accumulate in
the cell membrane with an amount of 760 nanomols (the reader can compare
this data with that obtained in Figure 6).

Now we want to consider a system that does not contain any oxygen at the
beginning, and we want to see how this system produces oxygen when diuron
is added to the system. In particular, we take at the beginning 1 microgram
of chlorophyll, 0 nanomols of oxygen in the cell membrane and 0 nanomols of
oxygen in the thylakoid membrane, and 450 nanomols of carbon dioxide in the
thylakoid membrane and 0 nanomols of carbon dioxide in the cell membrane.
The result of this simulation is reported in Figure 9 (the reader can compare
this with the equivalent experiment reported in Figure 7, where the inhibitor
is not present).
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Fig. 8. Oxygen (cell membrane) and carbon dioxide (thylakoid membrane) in

cyanobacteria (using inhibitor – first simulation).

We can see that after about 270 minutes the amount of oxygen in the cell
membrane is the same as the amount of carbon dioxide in the thylakoid mem-
brane; the accumulation of oxygen in the cell membrane stops after (about)
560 minutes with 480 nanomols of oxygen.

6.6 Pumps in Cyanobacteria

Now we use our simulator to study the process of proton translocation in the
case of another cyanobacteria, Anacystis nidulans. The proton translocation
consists in the pumping of protons, outside the cell, when oxygen is consumed.
Therefore the decrease of oxygen concentration inside the cell corresponds to
an increase of proton concentration outside the cell.

From [18] we can get the experimental data relating oxygen consumption
and proton translocation. In particular considering 1 mg of dry weight of
Anacystis nidulans, using one unit of enzyme; in two minutes 5 nanomols of
oxygen are consumed and, at the same time, 21 nanomols of protons are sent
out (translocated) from the cell and accumulated in the environment.

We can simulate this mechanism using our software.
In a formal simplified way, considering only the reaction involving oxygen

and protons, we can represent the process of pumps in Anacystis nidulans
with the following EC P system:
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Fig. 9. Oxygen (cell membrane) and carbon dioxide (thylakoid membrane) in

cyanobacteria (using inhibitor – second simulation).

Π = ({E,O, P}, [
1
[
2

]
2
]
1
, EkOj , λ,R1, R2, R

′

1, R
′

2), with (8)

R1 = ∅,

R2 = {EO5 → EP 21},

R′

2 = {(P, out)},

where Papp = 1 for each rule in R1, R2, R
′

2 (the reaction is always available
and the Pwin is not relevant here because there are no conflicts between the
rules) and each step of this system corresponds to two minutes.

The system is composed of two membranes, labeled 1 and 2, that represent
the Anacystis nidulans cell and the environment, respectively.

In the two regions there are the symbol object E (each occurrence of E
represents one unit of enzyme), the symbol object O (each occurrence of O
represents one nanomol of oxygen), and the symbol object P (each occurrence
of P represents one nanomol of protons).

The consumption of oxygen takes place in region 2 and using the symport
rule present in R′

2 the protons are sent out and accumulated in region 2.
Running the simulator over the P system described in (8), with k = 1

and j = 220, we obtain the diagram of Figure 10 describing the quantity (in
nanomols) of oxygen contained in the cell (2), and the quantity (in nanomols)
of protons accumulated in the environment (1). It is possible to observe that
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after about 15 minutes the amount of oxygen in the cell is the same as the
amount of protons accumulated outside.

Fig. 10. Consumption of oxygen and the translocation of protons in Anacystis

nidulans.

7 Concluding Remarks

In this chapter we have presented a probabilistic simulator of P systems re-
cently implemented and have shown how various cellular processes can be
modeled in the P systems framework and then simulated using the software.
We have presented the main features of the simulator, showing its working
and presenting the (strange and interesting) result of the simulation of a very
simple probabilistic P system. In this respect, we have suggested the existence
of a possible link between the emergence of life studied in biology and some
kind of probabilistic P system. We also believe that a possibly fruitful research
topic is the study of the fields (human life, economy, cell biology, etc.) that
can modeled by (probabilistic) P systems and then simulated by a simulator;
in this chapter we have discussed only biological applications, but we believe
that the P systems framework can be applied to many other different fields.

In Sections 2 and 5 we have presented a comparison between the math-
ematical model (and the associated software) and the real world, discussing
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the way in which biological concepts have been implemented in software and
introducing, in the P system area, new concepts, such as the availability of
a chemical reaction, the activity rate of a catalyst, and the possibility of a
catalyst to be at the same time active and not active.

Finally, in Section 6 we have shown how one can model some biological
processes in the P systems framework and, in particular, we have studied two
important biological processes: the (final step of) respiration in Escherichia
coli bacteria and the interaction between respiration and photosynthesis in
cyanobacteria, considering the consumption of oxygen, the accumulation of
protons in the environment, and the influence of a synthetic inhibitor. We
have shown how to translate these biological processes in the mathematical
framework of P systems and how to obtain results relevant from a biological
point of view, by using the simulator presented in Section 3.

In the near future, we plan to model other biological processes with more
biological details considering the concept of affinity introduced in our simula-
tor by the so-called probability of winning and the concept of availability of a
rule, modeled in the software by the probability of a rule being available; in
particular it would be very useful to add to the simulator the ability to change,
at runtime, the values of some of the biological parameters considered (such
as the affinity of an enzyme, that, for example, changes in Escherichia coli
according to the concentration of molecular oxygen in the substrate); in this
way, we can at the same time improve the simulator and the mathematical
model presented, as well as make possible new applications to microbiology.
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Summary. The immune system represents the natural defense of an organism. It

comprises a network of cells, molecules, and organs whose primary tasks are to de-

fend the organism from pathogens, and to maintain its integrity. Since our knowledge

of the immune system is still incomplete, formal modeling can help provide a bet-

ter understanding of its underlying principles and organization. In this chapter we

provide a brief introduction to the biology of the immune system, recalling several

approaches used in the modeling of the immune system, and then describe a model

based on P systems. Starting from a variant of P systems called client-server P sys-

tems, we use an abstract simulator as a useful intermediate step from a formal theory

suitable for theoretical results to a software implementation of a molecular network.

Finally, our approach leads to novel software able to provide new insights into the

interactions influencing T cell behavior with the use of statistical correlations of the

software experiments’ results.

1 Introduction

The immune system is a complex network of cells and molecules whose primary
tasks are to defend an organism from potentially dangerous foreign agents,
and to maintain the integrity of the organism. Foreign agents include toxins,
bacteria, fungi, parasites, viruses, various environmental and self-produced
antigens. In this section we present some basic immune system concepts; fur-
ther details can be found in immunology textbooks, for instance, [2] and [24].
The most important function of the immune system is the self/nonself recog-
nition that enables an organism to distinguish between the harmless self and
the potentially dangerous nonself. The mechanism of self/nonself recognition is
mediated through major histocompatibility complex (MHC) molecules bind-
ing short peptides intracellularly, and transporting them to the cell surface
for recognition by the T cells of the immune system. These peptides act as
markers; cells presenting self-peptides are tolerated, while those presenting
foreign peptides are subject to various immune responses.
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We have two fluid systems in the body: blood and lymph. The blood
and the lymphatic systems are responsible for transporting the agents of the
immune system across the organism. Lymphocytes are the most important
cells for adaptive immunity. They circulate in both the blood and lymphatic
systems, and make their home in lymphoid organs. The lymph nodes are the
usual places where antigens are presented to the cells of the immune system.

We have two main functionalities of the immune system: innate immu-
nity, and adaptive immunity. We are born with a functional innate immunity
system which is nonspecific; all antigens are attacked pretty much equally.
This innate immunity represents the first defense of the organism, a defense
achieved by many actions and components, such as surface barriers and mu-
cosal immunity, chemical barriers, and normal flora (microbes living inside and
on the surface of the body). The cells involved in the innate immune system
bind antigens using hundreds of pattern recognition receptors. These recep-
tors are encoded in the germ lines of each person; this immunity is passed
from generation to generation. In this chapter we concentrate on adaptive
immunity, which is more interesting for formal modeling.

Adaptive Immunity

Adaptive immunity (or acquired immunity) is a function of the immune system
given by the fact the immune system has to learn the specific antigens before it
can actually remove them from the organism. Adaptive immunity is developed
and modified throughout the life of the host organism. The adaptive immunity
appears to be a distributed system with a sort of coordination control, able to
perform its complex task in an effective and efficient way. The most important
components of adaptive immunity are the major types of lymphocytes: T cells,
and B cells. Peripheral blood contains 20%-50% of circulating lymphocytes;
the rest move in the lymph system. Roughly 80% of them are T cells, 15% are
B cells, and the remaining are null or undifferentiated cells. Their total mass
is about the same as that of the brain. B cells are produced from the stem cells
in bone marrow; B cells produce antibodies and oversee humoral immunity.
T cells are nonantibody-producing lymphocytes which are produced in the
bone marrow, but sensitized in the thymus. Parts of the immune system are
changeable and can adapt to better attack the invading antigen. There are
two fundamental adaptive mechanisms: humoral immunity, and cell-mediated
immunity. Humoral immunity is mediated by serum antibodies, which are
proteins secreted by the B cell compartment of the immune response. Cell-
mediated immunity consists of the T cells. Each T cell has many identical
antigen receptors which interact with antigens.

Cell-Mediated Immunity

Phagocytes are cells able to attract, adhere to, engulf, and ingest foreign bod-
ies. Promonocytes are made in the bone marrow, then released into blood,
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and called circulating monocytes which mature into macrophages. Once a
macrophage phagocytizes a cell, it places portions of its proteins, called T cell
epitopes, on the macrophage surface. These surface markers serve as an alarm
to other immune cells which then infer the form of the invader. Macrophages
engulf antigens, process them internally, and display parts of them on the cell
surface together with MHC molecules. This mechanism sensitizes T cells to
recognize the antigens. All cells are coated with various molecules and recep-
tors. CD stands for cluster of differentiation, and there are more than one
hundred and sixty clusters, each of which is a different molecule that coats
the surface. Every T cell has about 105 molecules on its surface; T cells have
CD2, CD3, CD4, CD28, CD45R, and other non-CD molecules on their sur-
faces. This large number of molecules residing on the surfaces of lymphocytes
produce huge receptor variability. They produce random configurations on the
lymphocytes surfaces; there exist around 1018 structurally different receptors.
An antigen is likely to find a near-perfect fit with a very small number of
lymphocytes.

T cells are primed in the thymus, where they undergo two selection pro-
cesses. The first positive selection process weeds out only those T cells with
the correct set of receptors that can recognize self-peptides presented by the
MHC molecules. Then a negative selection process begins whereby T cells that
can recognize MHC molecules complexed with foreign peptides are allowed to
pass out of the thymus. Cytotoxic or killer T cells (CD8+) do their work by
releasing lymphotoxins, which cause cell lysis. Helper T cells (CD4+) serve
as regulators, and trigger various immune responses. They secrete chemicals
called lymphokines that stimulate cytotoxic T and B cells to grow and divide,
attract neutrophils, and enhance the ability of macrophages to engulf and
destroy microbes. Suppressor T cells inhibit production of cytotoxic T cells,
providing a mechanism for preventing the self-damage of healthy cells by the
immune responses. Memory T cells are programmed to recognize and respond
to a pathogen previously encountered by the organism.

2 Modeling in Immunology

In this section we briefly present some continuous and discrete models of the
immune system.

The main problem of the immune system is to distinguish between self
and nonself. We can say that the success of the immune system is dependent
on its ability to distinguish between harmful nonself and everything else. This
problem is difficult because there are ∼ 1016 patterns in nonself, and they
have to be distinguished from ∼ 106 self patterns. Moreover, the environment
is highly distributed, resources are deficient in quantity compared with the de-
mand, and the host organism must continue to work all the time. The immune
system solves this problem by using a multilayered architecture of barriers,
namely a physical barrier (the skin), physiological barriers (e.g., the pH val-
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ues), and cells and molecules of the innate and adaptive immune response.
The resulting system is flexible, scalable, robust, and resilient to subversion.

The immune system models are mostly based on two biological theories
of the immune system, namely the clonal selection theory, and the idiotypic
network theory. The clonal selection theory is described by Nobel Prize winner
F. Burnet in [3], following the track first highlighted by P. Ehrlich at the be-
ginning of the twentieth century. The theory of the clonal selection states that
the immune response is the result of a selection of the right antibody by the
antigen, much like the best adapted individual is selected by the environment
in the theory of natural selection. The selected subsets of B cells and T cells
grow and differentiate; then they turn off when the antigen concentration falls
below some threshold. The idiotypic network theory is formulated by Nobel
Prize winner N.K. Jerne in [14, 15]. According to the idiotypic network the-
ory, the immune system is a regulated network of molecules and cells able to
recognize one another even in the absence of antigens. The idiotypic network
hypothesis is based on the concept that lymphocytes are not isolated, but
communicate with each other. As a consequence, the identification of anti-
gens is not done by a single recognizing set, but by several sets connected
by antigen-antibody reactions as a network. Jerne suggested that during an
immune response, antigens directly elicit the production of a first set of anti-
bodies, Ab1; then these antibodies act as antigens, and elicit the production
of a second set of “anti-idiotypic” antibodies Ab2 which recognize idiotypes
on Ab1 antibodies, and so forth. The immunologists consider these two in-
dependent theories as being consistent and complementary with each other
[27]. The clonal selection theory is considered to be important for a global
understanding of the immune system. The idiotypic network theory is useful
for understanding the existence of anti-idiotypic reactions, and the immune
responses. Most continuous models have been formulated using the framework
of both immunological theories [21, 22], while the discrete models are mainly
based on Jerne’s theory.

The systemic models of immune responses have mainly been devoted to
collective actions of various immune system components. These models do not
study single cells or single molecules, but rather focus on cell interactions and
collective behavior in activation, control, and supply of the immune responses.

Continuous Models

We briefly point out the main ideas, together with the advantages and dis-
advantages of some continuous models of immune systems. A good survey
of the continuous models can be found in [22]. Continuous models describe
the time evolution of concentrations of cellular and molecular entities which
play a significant part in the immune system. Each of these models works with
continuous functions defining the concentration (number of elements/volume)
of cellular and molecular entities. These models use systems of nonlinear or-
dinary differential equations, mainly representing conservation laws, in which
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unknowns represent the concentrations. Some models assume that concen-
trations do not depend on space variables, and interactions between entities
occur with uniformly random collisions. When concentrations do depend on
the space variables, the problem becomes mathematically more difficult, and
partial differential equations are needed.

The advantages of this approach are given by fact that the mathematical
methods have a well known and theoretically established background, and the
behavior of the solution can be described by qualitative and asymptotic anal-
ysis. Moreover, if a numerical solution is needed, then well known numerical
methods are available. However, there are some biological disadvantages. The
approximations necessary to keep the equations tractable may not be biolog-
ically evident, and so the model may move away from real biology. Worse,
most of these models fail when the concentrations of some entities decrease
drastically. The models are not compositional, and inserting new biological
details may change the mathematical structure of the model.

The general framework of the continuous models is given by nonlinear
equations describing generic iteration systems. They have a general form
∂tx = G(x) − L(x), where x = {x1, . . . , xn} is a vector describing concen-
trations, and the vectors G(x) and L(x) represent the gain and loss terms,
respectively. The solution of these equations is represented by a curve in the
n-dimensional state space describing the time evolution of the system starting
from the initial condition x∗(t = 0). The qualitative behavior of the solutions
is usually investigated, including stationary points (fixed points), local and
global stability, attractors, limiting cycles describing periodic behavior, and
strange attractors describing chaotic behavior. In these models it is crucial
to properly describe the affinity between cells and molecules. The simplest
affinity function is a bilinear form; more detailed models need more complex
nonlinear terms. In order to make them more realistic, there are some possible
improvements of the continuous models. For instance, considering a time de-
lay for the interactions between entities, the behavior of the delayed systems
may be qualitatively different (e.g., the stability of fixed points can change).
Usually new cells come into the system either from bone marrow or following
some hypermutations. This could be modeled using a stochastic source term
in the equations; the overall behavior can be very different.

Discrete Models

Discrete models consider individual entities as primitives, and the whole sys-
tem dynamics arises from their collective actions. These models use various
mathematical techniques such as the generalized Boltzmann equation, cellular
automata, and lattice gas. Most of these approaches are widely used to study
complex systems, and are based on computer simulations. Good surveys of
the discrete models can be found in [22, 27, 9].

The approach based on generalized Boltzmann equation is described in
[1]. Models based on cellular automata and lattice gas have been developed
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over the last twenty years, producing interesting results. Various mathemati-
cal models, particularly models based on cellular automata, are presented in
[17]. Automata-based models are used to investigate the logic of interactions
among a number of different cell types and their outcomes in terms of im-
mune responses [16, 26]. The rules modeling the dynamic evolution of these
automata-based models are expressed by logical operations. Application of
the rules is iterated over discrete time. Some of the discrete models bring
into the field the experience of computer scientists. The guiding line of these
approaches is a deeper comprehension of immune system by describing and
using immune system information processing in applications (see [9]). Some
applications of the artificial immune system are described in [8].

A real advantage of these models is that they can be built using biological
language, with biologically relevant approximations. New biological details are
easy to insert without changing the mathematical structure of the model. On
the other hand, qualitative and asymptotic analyses are no longer possible, or
quite difficult.

Modeling Cell-Mediated Immunity

T cells play a central role in the cell-mediated immunity. They orchestrate the
immune responses to foreign aggressors. When a T cell recognizes a foreign
antigen, it initiates several signaling pathways, and the cell activates. The
recognition of a foreign antigen is an extremely sensitive, specific, and reli-
able process; the models for T cell signaling network can help us understand
how these features arise and work. So far, the study of T cell activation has
benefited from the use of some mathematical models [4]. A key event for T
cell activation is an appropriate interaction between the T cells armed with
T cell antigen receptors (TCRs) and the professional antigen presenting cells
(APCs). TCR recognizes only the foreign antigen in the form of short peptides
presented in the groove of a molecule on the surface of the APC known as the
major histocompatibility complex MHC. The physical interaction of TCRs
with the peptide complexes is unique among signaling systems by its taking
place over a continuous binding value process. The recognition of antigen initi-
ates signal transduction. This can be broken down into series of discrete steps
related to various molecular events (interactions, state transitions) within the
signaling pathways. These are shown in Figure 1, reprinted from [18].

T cell responses show a hierarchical organization depending on the extent
of TCR occupancy, the duration of antigen binding, the timing of encoun-
ters, and the engagement of costimulatory receptors. TCR is a very complex
structure composed of a minimum of eight strongly associated chains. The
actual arrangement and stoichiometry of CD3 and TCR chains within TCR
complex is not entirely known. We refer in this chapter to a part of the signal-
ing network, namely the activation of Zap70 and the phosphorylation of the
adapters LAT , which are essential for connecting to the major intracellular
signaling pathways Ca+2/calcineurin and Ras/Rac/MAPK kinases. Although
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Fig. 1. TCR signaling pathways.

many other receptor interactions may contribute positively or negatively to
the quality and the quantity of the T cell immune responses, TCR signaling
upon antigen recognition determines a certain response (see [5]).

In this chapter we present a model of the T cell signaling network by a dis-
tributed version of P systems. Before presenting this version, let us emphasize
why the P systems are suitable for modeling the immune systems. The immune
system has more subsystems, each with its own rules. This structure can be
represented faithfully by a P system where each subsystem is modeled by a
membrane. The P system application of rules in a maximally parallel manner
expresses the natural competition for scarce resources in the immune system.
Communication and coordination is essential, and thus we consider P systems
with symport/antiport rules of communication among membranes. Since the
immune system environment is highly distributed, we introduce a P system
using the well known client-server paradigm used in computer networks and
distributed systems.
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3 Client-Server P Systems

P systems represent a new model of distributed and parallel computing in-
troduced in [19]. The approach is based on a hierarchical description: a P
system is basically composed of a membrane structure, consisting of several
membranes which do not intersect, and a skin membrane, surrounding all of
them; outside the skin membrane lies the environment. The membranes de-
limit regions, and initially contain multisets of objects, as well as evolution
rules involving objects, and possibly priorities for rules. In each step, rules
are applied nondeterministically in all membranes in a maximal and parallel
manner (in other words, rules and objects are randomly chosen, and according
to the available objects, all chosen rules are applied in parallel). The objects
can pass through membranes (and also to or from the outside of the system);
in this way we obtain transitions between configurations of the system. A se-
quence of transitions constitutes a computation; this halts if no rule can be
applied any more in the system. When getting a halting computation, we col-
lect its result by counting the objects that ended in an output membrane (it
could be the skin if such an output membrane is not indicated). Many variants
of P systems were introduced starting from this simple description, and many
results of universality and other theoretical problems could be explained in an
elegant manner using the formal languages theory. In order to strengthen the
connection between P systems and biological systems, we introduce, study,
and use a new version of P systems called client-server P systems (CSPSs) to
model the T cell signaling pathways and T cell activation [6].

Formally, we start from a particular variant of P systems, namely P sys-
tems with symport/antiport rules. The specificity of this type of P systems lies
in the form of their rules, which can be one of:

• (ab, in), (ab, out): objects a and b can pass through a membrane only to-
gether, in the same direction (symport rules), and

• (a, out; b, in): objects a and b can pass through a membrane only together,
but in different directions (antiport rules).

Theoretical results regarding this type of P system can be found in [20]. Gen-
erally, these results take into consideration the number of membranes and
the weight of the port (i.e., the number of objects involved in a symport or
antiport rule).

We formalize a client-server model according to the following description.
The clients are characterized by their states, while the server stores the current
states of clients and interaction rules defined over the states. When two clients
can interact, the server notifies them, supplying at that time the corresponding
rule. The clients interact and send their new states to the server, thus making
the model consistent.

A client-server P system (CSPS) is a P system composed of elementary
membranes (except the skin), with state objects modeling the states of the
clients, and rule objects modeling the communication between clients. The
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communication is of symport type. In formal notation, the CSPS contains
the skin membrane (numbered 1), together with m membranes representing
clients (numbered 2 to m + 1), and a membrane for the server (numbered
(m + 2)), all arranged inside the skin membrane. In the original approach of
[6], a rule object ηα1α2α3α4α5

has the following meaning: two clients defined
by states α1 and α3 can interact and pass to states α2 and α4, respectively;
at the same time, it is possible to get supplementary information α5.

Formally, a CSPS is a construct
Π = (V, µ,w1, . . . , wm+2, we,Me, R1, . . . , Rm+2,m + 2),

where:

1. V = A ∪B, with A,B disjoint sets such that:
• A =

⋃m+1
i=2 Si, where Si represents the states of client i;

• B = {ηα1α2α3α4α5
| α5 ∈ Me ∪ {λ}, αi ∈ A ∪Me, 1 ≤ i ≤ 4, where

α1 + α2 ⇒ α3 + α4 + α5 is an interaction rule},
2. µ = [1 [2 ]2 . . . [m+2 ]m+2 ]1,
3. w1 = ∅, wm+2 = B ∪ Sinitial, where the initial state of the server is

Sinitial = {s2, s3, . . . , sm+1}, si ∈ Si, 2 ≤ i ≤ m + 1 (the si represent the
initial states of the clients), wi = Si \ {si}, si ∈ Sinitial, 2 ≤ i ≤ m + 1,

4. Me = A,
5. R1 = {(αj αk ηα1α2α3α4α5

, out) | j ∈ {3, 4}, k ∈ {1, 2}, j − k 6= 2, αk, αk+2,
α5 ∈ Me, αj , αj−2 ∈ A} ∪ {(α3 α4 ηα1α2α3α4α5

, out) | αi ∈ A, 1 ≤ i ≤
4, α5 ∈Me} ∪ {(α3α4α5ηα1α2α3α4α5

, in) | αi ∈ A ∪Me, 1 ≤ i ≤ 5},
Rm+2 = {(α1 α2 ηα1α2α3α4α5

, out), (α3 α4 α5 ηα1α2α3α4α5
, in) | αi ∈ A ∪

Me, 1 ≤ i ≤ 4, α5 ∈Me ∪ {λ}},
Ri = {(αj ηα1α2α3α4α5

, in), (αj+2 ηα1α2α3α4α5
, out) | j ∈ {1, 2}, αj , αj+2 ∈

Si}, 2 ≤ i ≤ m + 1.

Inside the server membrane (the one with label m+2) there are state objects
(representing the current states of the clients) and rule objects. When two
state objects can be combined according to a rule given by a rule object, the
server membrane gives a “signal” to the respective client membranes.

The meaning of the rule (α1 α2 ηα1α2α3α4α5
, out) ∈ Rm+2 is the follow-

ing: the clients represented by membranes p and q, where α1 ∈ Sp and
α2 ∈ Sq, can interact according to the rule described by the rule object
ηα1α2α3α4α5

; as a result, these three objects (the current states and the rule
object) exit the server region. The client membranes p and q involved absorb
their own state objects and the rule object by means of their correspond-
ing rules (α1 ηα1α2α3α4α5

, in) ∈ Rp or (α2 ηα1α2α3α4α5
, in) ∈ Rp (and sim-

ilarly for membrane q). Then they release for further use their new states
and the rule object into the skin membrane, by (α3 ηα1α2α3α4α5

, out) ∈ Rp

or (α4 ηα1α2α3α4α5
, out) ∈ Rp (and similarly for membrane q). If α5 6= λ,

the supplementary information is brought in from the environment with rules
from R1. We emphasize the fact that the notifications of clients, and the
interactions between them take place in a parallel manner.
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Client-server P systems were theoretically investigated in [6], where it is
proved that CSPSs of degree at most 4 and using symport rules of weight at
most 4 are computationally universal. However, our goal here is to emphasize
the use of P systems in modeling molecular biology, particularly in adaptive
immunity. In order to make the theory able to describe the T cell signaling
network, we adopt the following refined approach from abstract models to
software experiments. We consider that the process of modeling and simu-
lation implies three basic objects: the real system, the abstract model, and
the simulator, together with two main relations: the modeling relation, which
ties the real system to the model, and the simulation relation, which connects
the model and the abstract simulator. Finally, the abstract simulator helps
us design a faithful computer implementation able to ensure useful software
experiments. These steps are described in the following picture:

T cell

signaling network

CSPS model

CSPsim
(simulator)

MOlNET
(software)

simulationmodeling

implementation

4 Client-Server P Simulators

Aiming to add both qualitative and quantitative features of the T cell signaling
network, starting from CSPS, we define a client-server P simulator (CSPsim
for short) as a set of communicating automata, together with appropriate
internal transitions for each component, and communication steps between
components. This approach leads to a novel software tool composed of a data
server and its clients, together with a graphical tool for a visual representation
of a molecular network. It is designed to work over computer networks, using
the power of several processors and systems. It is platform-independent, and
able to work over heterogeneous networks.

For each membrane of a CSPS, we define an automaton consisting of ports
carrying input and output values, states, internal and external transitions, and
timings. The structure of a CSPsim is defined as a set of automata together
with associated interaction partners. Each membrane of a CSPS corresponds
to an automaton in CSPsim. A state of the CSPsim has a set of rules (re-
actions) involving various membranes. We emphasize the existence of a co-
ordinator (server) that controls a certain number of client membranes, and
recomputes the new structure and rules of the system based on the least pu-
tative times of reactions. When a reaction occurs, the state of the simulator
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changes discretely, step by step. This means that the nonreactive collisions
are ignored. It is possible to use a single automaton for a certain type of
membrane, and therefore simulating a real system becomes more tractable.
For each membrane i we define an automaton M = (X,S, Y, δint, δext, λ, τ),
where

• X = {(p, v) | p ∈ IPorts, v ∈ Xp}, where IPorts is a set of input ports,
and Xp is a set of possible input values;

• Y = {(p, v) | p ∈ OPorts, v ∈ Yp}, where OPorts is a set of output ports,
and Yp is a set of possible output values;

• S is the set of states;
• δint : S → S is the internal transition function;
• δext : Q ×X → S is the external transition function, where Q = {(s, e) |

s ∈ S, 0 ≤ e ≤ τ(s)}, and e is the elapsed time since the last transition;
• λ : S → Y is the output function;
• τ : S → R

+ is the time advance function.

Let us describe how a CSPsim is essentially simulating a molecular inter-
action. In biology, the interaction rules are given by α1A + α2B →

∑

βiCi,
where α1, α2, and βi represent multiplicities. The executive has specific input
and output ports for each membrane client. In a certain configuration, the
executive selects a rule that could be applied, i.e., check if the members of
the left side of the rule are available in the current configuration. Then the
executive sends to the clients involved in this rule a message describing the
rule, by using its transition function δ. Each client receiving such a message
uses its own transition function, and then send an acknowledgement to the ex-
ecutive. After receiving the acknowledgements from the clients, the executive
performs a transition, and changes to a new configuration. And so on.

The executive receives from clients the necessary information regarding
the reactions that took place, or unsuccessful attempts to react. When quan-
titative changes appear in a CSPsim, the executive recomputes the putative
times for each reaction according to Gibson’s algorithm, and modifies the
clients membranes such that for the next reaction the client selected to par-
ticipate is the one with the least putative time. The results yielded by the
abstract simulation of a molecular network are strongly dependent on the al-
gorithm used for choosing the performed reactions. Several algorithms were
proposed to simulate the behavior of the biological systems. Our algorithm
is based on widely accepted stochastic mesoscopic algorithms in biology. The
mesoscopic view counts particles, but does not keep track of their position or
momentum.

Several interaction algorithms regarding the mesoscopic view of the physi-
cal biology were proposed. Gillespie developed two such algorithms, the Direct
Method [11] and First Reaction Method [12]. At each iteration these algorithms
generate some putative times for each reaction according to an exponential
distribution. The reaction with the least putative time will be executed and
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the system will be updated accordingly. Both algorithms have the time com-
plexity of O(r) for each iteration, where r is the number of reactions. Gibson
improved the Direct Method algorithm giving the Next Reaction Method [10].
This new algorithm uses Markov chains for choosing what reaction will be
performed next. One major improvement consists of generating only one ran-
dom number for each reaction. It also computes the putative times only for
the reactions affected by the last executed reaction. The complexity of this
algorithm for each iteration is O(log(r)), where r is the number of reactions.
This algorithm is obviously more efficient than Gillespie’s algorithms.

A client-server P simulator with two clients has the same computational
power as a Turing machine. It is also possible to prove some important prop-
erties for our abstract CSP simulator, such as hierarchical, modular composi-
tion, universality, and uniqueness. These properties support the development
of simulation environments. Thus an abstract CSPsim and its implementation
provide support for building models in a hierarchical and modular manner.
Moreover, within the framework presented for modeling and simulation we can
prove, up to a specific modeling relation, that the simulations reflect faithfully
the behavior of the real system.

5 Implementing T Cell Signaling Networks

The last step from modeling to software experiments is represented by the
implementation of the abstract simulators. We consider generally the molec-
ular network, and in particular the signaling network that grounds T cell
activation.

Molecular networks and computer networks look and behave similarly. In
this context, a suitable approach to implement the abstract CSPsim for molec-
ular networks is to develop a software system running over computer networks.
We developed a novel software system called MOlNET as an implementation
of our model for T cell molecular networks. MOlNET has two main entities:
the data server and the clients. The data server is the implementation of the
executive, and the clients implement the basic CSPsim structure simulating
the CSPS membranes. The formal frameworks of the CSPS model and CSPsim
ensure model validity, as well as simulator correctness. A simulator performs
the implicit operations of the model. An implementation is able to perform
the simulations described by CSPsim. We can assume that every membrane
is implemented by software clients, the executive is implemented by the MOl-
NET server, and the communication between membranes is implemented by
MOlNET communication protocols.

The entire architecture is shown in Figure 2. The software has a modular
architecture which allows us to easily integrate other tools, or even to use
various interaction algorithms:

• Graphical server: it ensures a user-friendly graphical interface. The user
is provided with multiple facilities such as for saving and loading certain
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Fig. 2. MOlNET architecture.

simulations, for viewing both input and output data, for modifying the
system data while software experiments run, or for defining tracers provid-
ing charts for the quantitative evolution of different clients of the system.
The graphic server is also responsible for distributing the processes over
the available hosts by communicating with the client generator through a
specific protocol.

• Data server: it is the correspondent of the executive; its main role is to
provide the clients with data regarding their interaction partners.

• Client generator: it is a process responsible only for starting other processes
(i.e., the client processes) at a specific host.

• Clients: they correspond to client membranes of CSPS. According to the
interaction algorithm, each client initiates reactions with its interaction
partners, and participates in the reaction results. In this way we avoid
getting any other client involved in a specific interaction. The clients keep
track of the quantities involved in reactions. For each component which
appears in a tracer, its client informs the graphical server about the quan-
titative modifications.

The output data consists of tracers. Each tracer is given for groups of
clients. It provides both an output file and a visual representation (chart) of
the evolution in time of the given clients. The user is provided with an intu-
itive graphical interface for introducing the input data for a simulation. The
input data window includes several sections corresponding to various molec-
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ular components, membranes, membrane rules, and their locations (hosts). A
snapshot is given in Figure 3.

Fig. 3. A screenshot of the MOlNET software.

For implementation we use the C programming language, BSD socket in-
terface for network communication, and GTK 2.0 for the graphical user inter-
face. This implementation uses computer networks for distributing the com-
putation, having the advantage of executing simulations over a large number
of membranes, and so providing valuable and relevant data about the behavior
of particular molecular networks.

Let us now return to modeling the behavior of the T cell signaling net-
work. T cell activation is initiated by the interaction between the TCR arms
of T cells and the professional antigen presenting cells. TCR recognizes the
foreign antigen in the form of short peptides presented in the groove of a
molecule on the surface of the antigen presenting cells. The recognition of
antigen initiates signal transduction. This can be broken down into series of
discrete steps that are related to various molecular events within the signaling
pathways. In order to illustrate the evolution of the model, we consider only a
part of the signaling network, namely the reaction between Zap70 and LAT ,
followed by the binding of GADS ⊕ SLP -76 to phosphorylated LAT . Zap70
and LAT correspond to CSPS membranes, and CSPsim clients. First there is
a communication between Zap70 and LAT , followed by the rules of these two
components; they wait in their states for the time indicated by their reaction,
then both send a message to that executive. The executive modifies the sys-
tem so as to reflect the quantitative aspect of the reaction. The executive also
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modifies the transition rules from the initial state for these two components,
allowing the binding of the complex GADS⊕SLP -76 to phosphorylated LAT .

We simulate and analyze the interactions that drive the T cell behavior
by using our approach based on client-server P systems and simulators. The
software experiments provide data that can be interpreted with statistical
methods. During these experiments we systematically perturb and monitor
the signaling network outcomes, by adding or deleting new components, mod-
ifying the quantities and rates, establishing new interactions between com-
ponents, or removing existing ones due to certain mutations. In this way, we
can represent various factors (the number of triggered TCRs, the presence
or absence of costimulation) which play a role in determining the outcome
of the T cell. Software experiments can contribute to explaining how these
factors determine differences in the formation and composition of the TCR
signaling complexes, and how they drive various biological consequences of T
cell signaling networks.

6 Software Experiments and Their Biological Relevance

Biological behavior is strongly influenced by the ability of molecules to com-
municate specifically with each other within large molecular networks. Crucial
for the T cell behavior is the signaling network that could engage various cell
responses due to potentially different signal types, quantities, and durations.
We describe the network behavior both qualitatively and quantitatively. Many
studies on T cell biology have revealed different types of functional responses
(activation, proliferation, anergy, cell death) to different TCR stimulations. It
is known that TCR engagement under some circumstances leads to prolifera-
tion and effector function, while under other conditions TCR stimulation leads
to anergy. The factors that shape the response to antigen are the concentra-
tion of antigen, the duration of antigen binding, the timing of encounters, and
the engagement of other receptors (such as CD28 or CTLA4). These T cell
responses can be broken down into a series of discrete steps that are related
to molecular events within a larger molecular network. Recent data suggest
that unbalanced activation of NFAT relative to its cooperating AP-1 imposes
the genetic program of T cell anergy that opposes the program of activation-
proliferation mediated by NFAT-AP1 complex. Based on these results, we
simulate the molecular network that drives T cell activation or T cell anergy.

The results obtained from experiments are statistically processed and in-
terpreted. One of the main goals of statistics is inferring conclusions based
solely on a finite number of observations about events likely to happen an
indefinite (infinite) number of times. Nonetheless, the strength of conclusions
yielded depends on the sample size on which the analysis is based. In fact,
in many cases a contradiction appears between the minimum size required by
statistics in order to make methods applicable, and the size that biological
wet experiments can provide. This is why faithful computer simulators for
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biological processes are needed: the use of such tools overcomes the problems
of budgeting, since the cost per software experiment is low in comparison
with the biological lab experiments. Therefore, data sets of desired size can
be obtained, thus allowing for correct statistical inferences and hypothesis
testing.

Fig. 4. MOlNET experiments regarding the T cell activation: ratios TCR/CD28

and NFAT/AP1 have similar trends.

We ran some experiments with our MOlNET software, using different in-
put amounts for TCR and CD28 so as to vary their ratio across an interval.
The output data of interest was the ratio between NFAT and AP1, the proteins
with the main role in deciding the T cell behavior. In Figure 4 a representation
of data yielded by experiments can be seen. The number of molecules were
varied over the interval 103 to 105 for each component, and 10−3 to 10−5 for
the Michaelis-Menten constant of enzymatic reactions. However, these may
not always hold true, and further restrictions may be imposed. On the other
hand, they could reflect the diversity of molecular environments throughout
T cell population. To be rigorous, each reaction may be varied in terms of
number of molecules that participate, and in terms of kinetic rates. Varying
these parameters for all reactions in the network produces a huge number of
software experiments.

We have applied the bootstrap method in the case of the ratio between
quantities of NFAT and AP1. After generating 500,000 bootstrap samples
from the original ratio sample, we obtained an estimate of the mean equal to
0.8023, as compared to the sample average of 0.8071. The full range of the
bootstrap estimates was (0.2140, 2.4179), and from it we were able to indicate
a 95% confidence interval for the mean (0.7071, 1.9003). For comparison, the
95% confidence interval obtained by using the classical t-test was (0.7220,
0.8921), which shows that the population of ratios has a distribution very
close to normal. Moreover, by applying the bootstrap method we obtain a
similar conclusion regarding the ratio TCR/CD28.
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Other software experiments we made were related to the Lck recruitment
model, that involves successive activations and inactivations of Zap70, Lck,
and phosphatase. We ran several tests regarding the quantitative aspects of
this particular interaction network. A chart representing the distribution of
the quantitative modification corresponding to each of substances involved is
presented below (we used 1.2 for a 20% increase).

It can be seen that the samples follow a normal distribution, with the mean
falling on either side of 1.0 mark, depending on the evolution of the system
– for example, the mean for inactivated Lck is clearly less than 1 while the
mean for its counterpart activated Lck is greater than 1. Furthermore, based
on the data obtained, we could predict the 95% confidence interval for the
mean of activated Lck modification as the interval (0.91; 1.14). This way, the
data yielded by using MOlNET can be analyzed to find statistical correlations
of the mechanisms inside the cell; it is also possible to make other predictions
regarding the T cell signaling network.

Tuning the T Cell Activation Thresholds

T cells exert important control over the immune system. Therefore the fine-
tuning of T cell activity can have great consequences on the responses that
the immune system triggers against viruses or bacteria, as well as on the
development of autoimmune diseases. It is very useful to see how a specific
molecule type, namely Cbl-b, could tune the threshold required for T cell
activation. More complex molecular networks that trigger two qualitatively
different cell responses (full activation and anergy) were considered [5]. These
results, together with other wet lab data, may open new perspectives in phar-
macological manipulation of immune responses. Drugs may trigger, enhance,
diminish, or stop the ways in which T cells respond, adjusting the expression
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level or activity level of the signaling proteins. We assume that simulations
of T cell signaling mechanisms could reveal useful information on immunod-
eficiencies, autoimmune disorders, vaccine design, as well as the function of
healthy immune system.

T cell activation is a threshold phenomenon that is dynamically modulated
during cell maturation [13]. It reflects the signal intensity that is necessary to
increase the expression of specific genes (e.g., IL-2 gene). Both the emergence
of threshold and its tuning depend on dynamic interplay between positive and
negative factors. As T cells receive many signals from self antigens, they have
to adapt their activation thresholds in such a way that self-stimuli fall under
the threshold and consequently no response is elicited against self. Further-
more, nonself antigens provide stronger signals that overcome the activation
threshold, and as a consequence the cell activates and produces a certain im-
mune response. In the following discussion, we investigate the role of Cbl-b
in tuning the activation thresholds. Basically, we look for the influences that
Cbl-b exerts on the level of activated Zap70. We consider the model proposed
in [4]. Then we add Cbl-b, and the levels of Zap70* are measured. High levels
of Zap70* may trigger cell activation, while levels below the threshold do not
have this effect. The expression levels of various signaling proteins vary dur-
ing immune cell maturation (e.g., the level of Lck declines during development
while the level of SHP phosphatase increases); our experiments consider the
heterogeneity of activation thresholds at the level of population of T cells (or
T cell clones) rather than during the development of a single clone.

8
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Fig. 5. Cbl-b alters the signaling pathways.

Recent reports highlight that Cbl-b is a key regulator of activation thresh-
olds in T cells. Many proteins are associated with Cbl-b, including Lck* and
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Zap70*. Cbl-b mediates chemical modification (ubiquitination) of these acti-
vated kinases that target them for degradation [23] (reactions 8 and 9 in Figure
5). The specific chemical modifications due to ubiquitination are denoted by
“**”. Degradation of active kinases results in the reduction of the activa-
tion of downstream signaling proteins. Furthermore, degradation of Lck can
reduce the activation of Zap70, as shown in Figure 5. These events raise the
threshold requirements for cell activation and prevents the development of au-
toimmunity [25]. Moreover, following TCR ligation, Zap70* activates Cbl [18]
(reaction 7). Additionally, CD45 activates Lck (reaction 6). All these molecu-
lar events finely tune the signal intensity in such a way that it draws nearer to,
or deviates from the activation threshold. The changes in the Lck*/Lck-total
ratio, as well as in the Zap70*/Zap70-total ratio are shown in Figure 6. If the
amounts of Cbl-b (and Cbl-b*) vary, and amounts of Lck (and Lck*) vary as
well, then Zap70*/Zap70-total ratio still has slight variations (as in Figure
6). But when the amounts of Cbl-b and Cbl-b* equal 500,000 molecules, for
an activation threshold set around 0.45 (that is, Zap70*/Zap70-total = 0.45,
a thin horizontal line in our picture), the cell could either activate or not
(during experiment 2, the signal intensity represented by a gray continuous
curve is below the threshold, while in experiment 3 the threshold is overcome).
These outcomes are produced by differentially regulating the amount of Lck*
within the cell. In other words, Cbl-b fine-tunes T cell reactivity, and this also
depends on the amount of Lck*.

The software experiments are represented by numbers from 1 to 4 along
the horizontal coordinate in Figure 6. The input values of Lck and Lck* varied
from 10,000 to 100,000, and from 500,000 to 1,000,000 molecules, while the
input values of Zap70 and Zap70* were kept constant: 100,000. Cbl-b and
Cbl-b* were first set to 10,000 (dark lines), and were then set to 500,000. The
kinetic constants associated to the corresponding reactions of Figure 5 were
k1 = 0.001, k2 = k3 = k4 = k5 = k6 = 1, k7 = 0.1, and k8 = k9 = 0.01.
Lck-total = Lck+Lck* and Zap70-total = Zap70 + Zap70*.

7 Conclusions

P systems were not initially created to model biological systems, although
similarities can be observed. Despite many results of universality and several
formal language problems which could be explained in an easier and elegant
manner, it is useful and desirable to have more connections with applied com-
puter science and molecular biology. Trying to strengthen the connections
between P systems and molecular biology, we present a new version of P sys-
tems related to the client-server model used in computer networks. We use
this version of P systems called client-server P systems to model the signaling
network of the T cell. Then we introduce the client-server P simulators; these
abstract simulators represent a useful intermediate step from a formal theory
suitable for theoretical results to a software implementation of a molecular
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Fig. 6. Lck*/Lck-total and Zap70*/Zap70-total levels after TCR triggering and

Cbl-b activation.

network. Using the abstract simulators called CSPsim, we design a software
environment called MOlNET. Various software experiments (e.g., for tuning
the activation thresholds) take into consideration both qualitative and quan-
titative aspects. In this way we get relevant biological information on T cell
behavior, particularly on T cell responses. The simulations explain how var-
ious factors play a certain role in determining the T cell response, relating
input and output values of T cell mechanisms. In particular, we see how a
Cbl-b could tune the threshold required for T cell activation.

As far as we know, the existence of a server (an executive) for the molec-
ular interaction is a new feature; the existence of a coordinator in molecular
processes was recently advanced by some biologists. Therefore it is difficult
to compare the architecture of our system with other systems. Regarding its
functionality, we can mention its flexibility, modularity, and expressive power.
The current approach may serve as a platform for further experimental and
theoretical investigations.
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5. G. Ciobanu, B. Tanasă, D. Dumitriu, D. Huzum, G. Moruz: Simulation and

Prediction of T Cell Responses. Proc. 3rd Conf. on Systems Biology ICSB’02,

Stockholm, 2002, 88–89.

6. G. Ciobanu, D. Dumitriu, D. Huzum, G. Moruz, B. Tanasă: Client-Server P
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Summary. A model of light reactions taking place in photosynthesis is constructed
using a variant of P systems. Behaviors of the model under various combinations of
parameters are tested on a computer. Computer simulations show that the model ex-
plains in a good way many phenomena of photosynthesis, including photoinhibition
mechanisms. A dynamical system using differential equations for photosynthesis is
compared with the P system model. The comparison makes it clear that P systems
are much better tools for dealing with biological phenomena than models based on
differential equations.

1 Introduction

Living cells, especially eukaryotic cells, have many membrane-enclosed struc-
tures called organelles. There are many enzymes embedded in the membranes
of organelles which act as catalysts of most biochemical reactions taking place
in a cell. By enclosing organelles in membranes, living cells obtain many ad-
vantages; for instance, they can generate the electric and chemical potentials
observed in mitochondrias and chloroplasts and isolate dangerous enzymes
such as protease in lysosomes. This is one of the reasons why membrane com-
puting is a promising framework for modeling issues related to cell biology.

Recently, our knowledge of biology has rapidly increased. However, we
still do not have general methods for explaining biological phenomena. For
example, we cannot explain some macroscopic phenomena, such as emotions,
starting from the microscopic phenomena, such as impulses and neurotrans-
mitters. We need a theory or a “language” describing the intermediate realm
between macro and microscopic phenomena. It is our belief that membrane
computing is an important step toward such a theory.

In this chapter we introduce two extensions of P systems. The first exten-
sion concerns the P systems with inner regions of membranes. Because the
membrane of a living cell is not a thin film but a complex structure, it is
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natural to consider the inner region of a membrane, in between the two layers
of phospholipidic molecules. Then, we incorporate nonintegral multiplicities,
in fact, multiplicities given as real numbers, and operations (e.g., multipli-
cations) among multiplicities. By making use of the latter extension, we can
treat ratios, probabilities, concentrations, and so on. The membrane comput-
ing systems using nonintegral multiplicities are called IR-subset transforming
systems with membrane.

After preparing these theoretical tools, we concentrate on the photosyn-
thesis of plants, a process which occurs in chloroplasts. A chloroplast catches
light energy, converts the energy into chemical energy, and makes starch from
CO2, H2O, and the chemical energy. The first two reactions are called the light
reactions. We consider information processing in the light reactions. The light
reactions behave differently according to the strength of the light. We con-
struct an IR-subset transforming system which is a model of the light reactions
and simulate the behavior of this system on a computer.

In Section 2, we discuss P systems with inner regions of membranes. A
rough sketch of photosynthesis will be found in Section 3. In Section 4, IR-
subset transforming systems with membranes are defined. Then we construct
a model of the light reactions. Section 5 is devoted to computer simulations
of the model defined in Section 4 under various combinations of parameters
and initial conditions. In Section 6, we construct a traditional differential
equation based dynamical system as a model of photosynthesis and analyze
it. This unveils the fact that P systems or IR-subset transforming systems are
much more useful than systems of differential equations.

2 P Systems with Inner Regions of Membranes

In this section, we consider the inner region of a cytoplasmic membrane and
define and analyze P systems having such regions, besides usual regions de-
limited by membranes. We assume that the reader is familiar with the basic
notions about P systems, e.g., from [6] and [7].

The cytoplasmic membrane of a living cell consists of a double layer of
phosphoric lipids and various proteins embedded in the layer (Figure 1). The
inner region of a membrane is hydrophobic because there are hydrocarbon
chains of lipids inside the membrane and phosphoric acids outside. The struc-
ture of the membrane induces a selective permeability for molecules. Small
molecules, such as H2O, O2, and CO2, easily go through membranes. On
the other hand, large molecules (larger than about 100 Dalton, depending on
molecular structure) and all ions cannot diffuse across membranes. However,
the proteins embedded in the membrane control transportation of ions and
molecules. The roles of such proteins is classified into three cases (details are
found in textbooks on molecular biology, e.g., [1]):
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P

al

Fig. 1. Schematic diagram of a cytoplasmic membrane; ‘a’, ‘l’, and ‘P’ stand for
phosphoric acids, hydrocarbon chains of lipids, and proteins, respectively.

1. Make channels through which ions move passively. A channel is specific to
an ion, that is, there are different channels for different ions, e.g., sodium
channels, calcium channels, and so on.

2. Provide pumps which transport ions (or molecules) against the gradient of
the concentrations, that is, active transportation. Pumps are also specific
to ions and molecules.

3. Catch molecules (or ions), change them if necessary, and release them on
the same or the other side of the membrane.

We also note that membranes of living cells and organelles in cells discrim-
inate between the inside of the membrane and the outside. The discrimination
is the very origin of living organisms.

Now we introduce the inner regions of membranes using P system notations
as follows (see Figure 2):

1. The inner region of a membrane which separates regions n and n + 1 is
denoted by mn where the letter m stands for “membrane.”

2. For an evolution rule X → (u, tar) from a normal region (not from an
inner region), tar may also be inmn (in addition to here, inn, and out),
which implies that u is sent to the inner region mn. The target membrane
must be adjacent to the region where the rule is applied.

3. For an evolution rule X → (u, tar) from an inner region of a membrane,
tar may be one of here, inside, and outside.

In terms of computability, the modifications above bring nothing new, in
the sense that the computing power of the family of P systems with inner
regions of membranes is identical to that of standard P systems; the proof of
this result can be found in [5].
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Fig. 2. Modified targets of evolution rules when inner regions of membranes are
considered.

In order to treat reactions of photosynthesis, because a reaction occurs
with some probability and the total number of reacting molecules is the prod-
uct of the probability and the numbers of molecules, we have to introduce real
numbers and operations with real numbers into P systems. That is why we
will use here IR-subsets, which are instances of K-subsets as defined in [3].

Let X be a set of objects. An IR-subset A of X is a function from X to
IR, where IR is the set of all real numbers. A value A(x) of this function for
some element x in X is a “real valued multiplicity” of x in the “subset A.”
This notion can be considered a paraphrase of concentration of molecules,
that is, x is a name of a molecule, e.g., CO2, and A(x) is the concentration
of x. That is why we denote the multiplicity of x as [x]A instead of A(x).
Because the concentrations of molecules differ in various regions, there is a
distinct IR-subset in each region, and this makes possible the identification of
an IR-subset by the name of the corresponding region.

For two elements [x]A and [y]A in an IR-subset A and any real numbers p
and q, the addition and multiplication operations are defined by

p[x]A + q[y]A and p[x]A[y]A,

which are nothing other than operations on real numbers.
Then, we extend P systems to IR-subset transforming systems with mem-

branes by using evolution rules of the form

X → (mul1Y1, tar1), (mul2Y2, tar2), . . . , (mullYl, tar l),

where muli is a formula on an IR-subset, Yi is an object, and tar i is a modified
target, considering as above inner regions of membranes. As in P systems, tar
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is omitted if tar = here. When the rule is applied in a region, the multiplicity
of X in the region goes to 0 and the multiplicity of Yi in the region indicated
by tar i is increased by adding muli for every i = 1, . . . , l.

3 Photosynthetic Reactions Modeled by a Standard P
System

Photosynthesis of higher level plants occurs in chloroplasts . In a chloroplast
there are many membrane-surrounded structures called thylakoids . The re-
gion inside the thylakoid membrane is called lumen. The space between the
chloroplast envelope and thylakoids is called stroma.

Photosynthetic reactions are classified into two groups: light reactions and
dark reactions . Light reactions separate water into O2 and H+, reduce NADP
to NADPH, and synthesize ATP. The enzymes which act as catalysts of light
reactions are embedded in the thylakoid membrane. Dark reactions make
starch from CO2 and H2O using the reduction power of NADPH and the
chemical energy of ATP. Dark reactions occur in stroma.

Light reactions are carried out by two photosystems, photosystem I and
photosystem II, PSI and PSII, respectively. PSI and PSII consist of many
proteins and pigments such as chlorophyll and carotenoid. Pigments catch
light energy and give it to the proteins in PSI and PSII. Using the energy,
PSII splits water on the lumen side of the thylakoid membrane and transports
H+ from stroma to lumen, while PSI reduces NADP on the stroma side of the
thylakoid membrane (see Figure 3).

Considering net reactions, light reactions are summarized as follows:

2H2O(L)
PS,γ−→ O2(L) + 4H+(L), (1)

2NADP(S) + 2H+(S)
PS,γ−→ 2NADPH(S), (2)

4H+(S)
PS,γ−→ 4H+(L), (3)

where γ represents photons and (L) and (S) represent molecules in lumen and
stroma, respectively. We omit electrons from the chemical formulas above.
The electric potential generated by electrons is the motive power of the active
transport of H+. So reactions (1) to (3) link each other and, as a consequence
of these reactions, the concentration of H+ in lumen increases or the pH in
lumen decreases.

In the thylakoid membrane there is another structure which synthesizes
ATP using the chemical potential of H+ as follows

ADP(S) + P(S) + nH+(L) → ATP(S) + nH+(S), (4)

where P stands for phosphoric acid and n is the number of H+s which are
required for the ATP synthesis. The number n depends upon the difference
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Fig. 3. The structures of the thylakoid membrane and light reactions; γ stands for
a photon.

in pH between lumen and stroma; usually, n = 3. The dark reactions are
essentially the reverse of (2),

CO2 + 4NADPH → CH2O + 4NADP + H2O, (5)

which can be assumed a composition of the following four reactions:

4NADPH → 4NADP + 4H+ + 4e−,

CO2 + 4e− → CO2− + O2−,

CO2− + 2H+ → CH2O,

O2− + 2H+ → H2O.

In moderate luminosity, the products of light reactions are all consumed by
dark reactions. But, if the light is strong or dark reactions stop for whatever
reason, the products, NADPH at stroma and H+ at lumen, become harmful
to the structure of chloroplasts; they may destroy proteins, pigments, lipids,
and so on. Consequently, plants have mechanisms to depress light reactions
in high luminosity. The mechanisms are called photoinhibition. The details
of photoinhibition are unknown. We consider two suggested photoinhibition
mechanisms. The first consists of reactions which occur when there is no
NADP in stroma and the pH in lumen is less than 5 [4]. The reactions are
summarized as follows:

2H2O(L)
PS,γ−→ O2(L) + 4H+(L), (6)
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O2(S) + 4H+(S)
PS,γ−→ 2H2O(S), (7)

4H+(L) + O2(L) −→ 2H2O(L), and (8)
2NADPH(S) + 2H+(S) + O2(S) −→ 2H2O(S) + 2NADP(S). (9)

The second mechanism decreases the activity of PSII. PSII has many chloro-
phyll-protein complexes (called LHCII) as antennas to capture photons. PSII
releases LHCIIs in strong light and decreases its light collecting activity. In
other words, there are two type of PSII, PSIIh with high activity and PSIIl
with low activity. Strong light conditions convert PSIIh to PSIIl and the total
photosynthesis rate decreases [2].

4 Modeling of Light Reactions and Photoinhibition by
an IR-subset Transforming System

In this section, probabilities of photosynthetic reactions are first considered.
Then, an IR-subset transforming system called Photo, which is a model of light
reactions and photoinhibitions, is constructed.

4.1 Reacting Probabilities of Photosynthesis

First let us consider the probability that a chemical reaction occurs in an
ensemble of molecules. For a reaction

X C−→ Y,

where C is the catalyst of the reaction, the individual molecule X will be
caught with probability p by the catalyst C in a time unit. Then, the proba-
bility for a molecule being caught by one of the nC catalysts is given by

1 − (1 − p)nC = 1 − ((1 +
−1
p−1

)p−1
)pnC

≈ 1 − e−pnC ,

because p � 1 and (1 + a
x )x ≈ ea for x � 1. Then we define

Pr(nC) = 1 − e−pnC .

If the catalyst C is activated by combining with some additional factor, say
D, the probability will be described by

Pr(nC , nD) = 1 − e−pnCnD ,

where nD is the multiplicity of factor D which activates the catalyst. So, after
reactions taking place in a time unit, the multiplicities of molecules X and Y,
denoted by n′

X and n′
Y respectively, are given by
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n′
X = nX(1 − Pr(nC)),

n′
Y = nY + nXPr(nC).

We note that we count molecules in the region in which the reaction occurs and
that the “numbers” need not necessarily be the actual numbers of molecules
but may be ratios of molecules to some constant1, in which case we take
concentrations of molecules into account.2

Then we compute the probabilities that reactions (1) to (9) in Section 3
take place. Because reactions (1) to (3) link to each other, they occur with
the same probabilities P1 and P2 which are dependent on the photosystems
PSI and PSII, respectively. The photon ν is the additive factor to activate
PSI and PSII. Thus,

P1 = 1 − e−p1[ν][PSII],

P2 = 1 − e−p1[ν][PSI].

Reactions (4) and (5) occur at a constant rate, which is adopted for normal
light condition ν0, and occur only if the concentration of H+ in lumen is
sufficiently larger than that in stroma, because reaction (4) is derived from the
difference in concentrations of H+ on both sides of the thylakoid membrane.
So the probability of (4) and (5) have an identical value P5, which is given by

P5 =

{

1 − e−p1[ν0][PSI], if [H+
L

]

[H+
S

]
≥ θATP,

0, otherwise.
1 The unit “mol” is the ratio of the numbers of molecules to Avogadro’s number.
2 By the Taylor expansion we have

Pr(nC) = −
∞

∑

i=1

1

i!
(−pnC)i.

If pnC � 1, we have Pr(nC) ≈ pnC . Then

nXPr(nC) = pnCnX ,

which coincides with the reaction velocity k[X][C] under the replacements p ↔ k,

nX ↔ [X], and nC ↔ [C]. Moreover, if there is a reverse reaction X
C← Y with

probability p′ of occurring, then the number of X created from Y in a time unit
is given by nY Pr′(nC), where Pr′(nC) = 1 − e−p′nC . The assumption that the
numbers nX and nY do not change leads to the equation

nXPr(nC) = pnXnC = nY Pr′(nC) = p′nY nC ,

or
nX

nY
=

p′

p
,

which coincides with the equation assumed by the chemical equilibrium theory.
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Because reactions (6) to (9) are photoinhibition reactions, they occur only
if NADP in stroma is less than a threshold θNADP or if the pH in lumen is
less than 5, i.e., the number of H+ in lumen is more than a threshold θH+ .
Reactions (6) and (7) are coupled and they occur with the same probability

P6 =
{

0, if [NADP] ≥ θNADP,
p1, otherwise.

Also reactions (8) and (9) are coupled and are regulated by the difference in
the numbers of H+ in lumen and stroma. Therefore, we have

P8 =
{

0, if [H+] ≤ θH+ ,
1 − e(−p8([H

+
L

]−[H+
S

])), otherwise.

4.2 A Model for Photosynthesis

After the previous preparations, we construct an IR-subset transforming sys-
tem called Photo, which simulates photosynthesis and photoinhibition. Photo
has three regions: the stroma which is denoted by S, the inner region of the
thylakoid membrane which is denoted by mL, and the lumen which is denoted
by L. That is, the envelope membrane of chloroplast is the skin membrane of
Photo. The inner region mL of the thylakoid membrane plays an important
role in Photo. There are many thylakoids in a chloroplast, so we might use
many regions of mL and L. Also, there is experimental evidence which sug-
gests differences between stacked thylakoids and unstacked thylakoids. But,
as a first step of modeling, we use here the simplest membrane structure, as
described above.

The set of objects V of Photo is given by

V = {H+, NADP, NADPH, PSI, PSIIh, PSIIl}.

These objects are changed by the sets of evolution rules RS , RmL , and RL

which correspond to the regions S, mL, and L, respectively. These sets of
rules are the following:

RS = {RS1, RS2, RS3},
RmL = {RmL1, RmL2}, and
RL = {RL1},

with the individual rules as given below:

RS1 (2): NADP −→ (1 − 2r2)[NADP]S NADP 2r2[NADP]S NADPH

RS2 (5,9): NADPH −→ (1 − r5 − 2r9)[NADPH]S NADPH
(r5 + 2r9)[NADPH]S NADP
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RS3 (2,7,9): H+ −→ (1 − 6r1 − 4r7 − 2r9)[H
+]S H+, (4r1[H

+]SH+ inL)

RmL1: PSIIh −→ ((1 − rPS)[PSIIh]mL) PSIIh rPS[PSIIh]mL PSIIl

RmL2: PSIIl −→ (1 − rhk)[PSIIl]mLPSIIl rhk[PSIIl]mL PSIIh

RL1 (1,4,6,8): H+ −→ ((1 − r8)[H
+]L + (r1 + r6)CL − r5CATP ) H+

(r5CATP H+, out).

The numbers in the parentheses correspond to the reaction numbers explained
in Section 3. The constants CPS , CL, and CATP correspond to the “house-
keeping” PSIIh recovering, the maximum water splitting in lumen, and the
maximum ATP synthesis in the thylacoid membrane, respectively. The reac-
tion rates rx are given by:

r1 = 1 − exp(−p1ν[PSIIh]mL) + 1 − exp(−p′1ν[PSIIl]mL),
r2 = 1 − exp(−p1ν[PSI]mL),

r5 =
{

2(1 − exp(−p1ν0[PSI]mL)), if [H+]L
[H+]S

≥ θATP,
0, otherwise,

r6 = r7 =
{

0, if [NADP]S ≥ θNADP,
r1, otherwise,

r8 = r9 =
{

0, if [H+]L ≤ θH+ ,
1−exp(−p8([H+]L−[H+]S))

4 , otherwise,
rPS = 1 − exp(−pPSν[PSIIh]mL),

where pPS stands for the probability of the photosystem II decreasing reac-
tion. The above rules are easily derived from reaction probabilities obtained
in subsection 4.1 and the appropriate number of molecules which jointly par-
ticipate in the reactions.

Initially, the IR-subsets S0, mL0 , and L0 are placed in stroma, the in-
ner region of the thylakoid membrane, and in lumen, respectively. Because
the transition of Photo is assumed to continue forever, there is no specific
output region. This means that all multiplicities (or numbers) of objects (or
molecules) should be monitored forever.

5 Computer Simulations

We simulate the behaviour of Photo on a computer with various parameter
values and various initial IR-subsets.

Conditions of Simulations. We examine seven cases, as shown in Table 1.
In Table 1, “photosystem decreasing activity disable” means that photo-

system II always has high activity or there are no PSIIls, which is realized by
setting pPS = 0.
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Table 1. Combinations of light conditions and photosystem decreasing activity.

photosystem decreasing activity
light condition enable disable

dark (ν = 0) case Dark

normal (ν = 1000) case EN case DN

strong (ν = 10000) case ES case DS

very strong (ν = 105) case EV case DV

Tables 2 and 3 show standard parameter values and the initial IR-subsets3.

Table 2. Parameters for the simulation.

constants rhk = 1 − exp(−phk), CL = 30000 CATP = 500
phk = 0.01

probabilities p1 = 10−8 p′
1 = 10−9 p8 = 10−5

ν0 1000

thresholds θNADP = 200 θH+ = 30000 θATP = 10

Table 3. The initial values for the simulation.

x [x]S0 [x]mL0
[x]L0

H+ 3000 0 3000

NADP 1000 0 0

NADPH 0 0 0

PSI 0 1000 0

PSIIh 0 1000 0

PSIIl 0 0 0

Many simulations were done under different parameter and initial IR-subset
values. They are listed in Table 4.

During simulations under very strong light conditions, the multiplicity of
[H+]S goes to unrealistic, i.e., negative, values. The simulation program resets
these values to biologically reasonable values, i.e., 30, which corresponds to
pH 8 under an assumed volume of stroma. We call such a phenomenon “lock-
in.” Lock-in occurs when reaction rates, such as r1, r2, etc. become too large
in comparison with the number of the molecules. This will be avoided by
3 The “standard” values are selected to fit observed figures of chloroplasts. For

example, the numbers of H+ ions correspond to the concentration of H+ for pH
6. But “luminosity” of light is not an observed value, but it is selected to adjust
all other parameters and the initial IR-subsets.
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using small reaction rates, in other words, small probabilities p1, p′1, etc., and
increasing iterations of rules in the simulation. But, because lock-in occurs in
quite a few cases, we have not changed the model Photo and the simulation
program.

Table 4. Parameters and initial IR-subset values under which simulations were done.
We indicate here only the values which are different from the standard values.

Name of condition value 1 value 2

small θNADP θNADP = 133

large θNADP θNADP = 300

small θ+
H 1 θ+

H = 20000

small θ+
H 2 θ+

H = 15000

large θ+
H θ+

H = 45000

small p′
1 p′

1 = 5.0 × 10−10

large p′
1 p′

1 = 2.0 × 10−9

initial low pH in lumen [H+]L0 = 5700 [H+]S0 = 300

no photoinhibition θNADP = 0 θH+ = 1014

extremely small p1 & p′
1 p1 = 10−10 p′

1 = 10−11

extremely large p1 & p′
1 p1 = 10−6 p′

1 = 10−7

Results of Simulations. In the case Dark, obviously no photosynthesis oc-
curs and the initial IR-subset remains unchanged in all conditions. Simulations
of the case Dark show soundness of Photo in an extreme condition, that when
no light is present.

Figures 4 to 9 display changes of values of pH in stroma and lumen, num-
bers of NADPH and PSIIh for the cases EN, ES, EV, DN, DS, and DV,
respectively, during simulations under the standard conditions. One can see
that the values go to equilibria after 50–100 iterations, but some of them
fluctuate around equilibria. The same tendency is observed everywhere, but
not when using extremely small p1 and p′1. The average values of the last 100
iterations from the total of 210 iterations are shown in the following tables as
equilibrium values.

Tables 5 and 6 show averages of values in the last 100 iterations of a
total of 210 iterations under various conditions. In the tables, “standard”
represents the same values as the standard condition and “←” indicates the
same values as in the left column. The quadruple in Table 5 represents ([H+]L,
[H+]S , [NADPH], [PSIIh]) and the triple in Table 6 represents ([H+]L, [H+]S ,
[NADPH]). We omit [PSIIh] from Table 6 because [PSIIh] keeps the initial
value 1000 if the photosystem decreasing activity is disabled. For the same
reason, we omit the conditions of small and large p′1 from Table 6, because p′1
affects only the photosystem decreasing activity.
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Table 5. Results of simulations with photosystem decreasing activity enabled. The
quadruples represent ([H+]L, [H+]S , [NADPH], [PSIIh]).
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 4. Simulation of case EN under the standard condition.

pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 5. Simulation of case ES under the standard condition.

One more condition is interesting and simulated: long iterations of ex-
tremely small p1 and p′1. The results are shown in Table 7 and displayed in
Figures 10 and 11. The results in Table 7 tell us that there is a kind of trade-
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 6. Simulation of case EV under the standard condition.

Table 6. Results of simulations with photosystem decreasing activity disabled. The
triple represents ([H+]L, [H+]S, [NADPH]).

condition DN DS DV

standard (29338, 125, 334) (36931, 14, 522) ←
small θH+ 1 (19824, 111, 285) standard standard

small θH+ 2 (15029, 101, 251) standard standard

large θH+ (42780, 145, 415) (45539, 14, 564) ←
small θNADP standard standard standard

large θNADP standard standard standard

initial low pH in lumen (15998, 57, 175) (54386, 8.6, 453) ←
nophotoinhibition (52625, 167, 499) (465522, 17, 905) ←

extremely small p1 & p′
1 (3669, 2723, 32) (9074, 1153, 275) (29316, 1.4, 503)

extremely large p1 & p′
1 (35218, 883, 119) ← ←

off between probabilities of reactions and the number of iterations, which
validates the consideration about the lock-in.

Summary of Simulations. The simulations make it clear that Photo is a
good model for light reactions and photoinhibitions of photosynthesis. One
can observe the following:
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 7. Simulation of case DN under the standard condition.

Table 7. Results of 20000 iterations under extremely small p1 and p′
1 condition.

case EN case ES case EV
(29593, 197, 389, 618) (29229, 36, 691, 271) (29000, 5.2, 783, 97)

case DN case DS case DV
(29067, 124, 330) (29126, 12, 464) (29313, 1.2, 485)

• The photosystem decreasing activity is effective in preventing damages
caused by a low pH under strong light conditions.

• Photoinhibition reactions (6) to (9) are very important. If there were no
such reactions, the cloroplasts would have fatal damage.

• Photo is sensitive to the threshold of pH (θH+), which may suggest that
different θH+ correspond to different plants which grow under different
light conditions.

• Photo is insensitive to the threshold of NADP (θNADP) for photoinhibition.
This may suggest that photoinhibition is triggered mainly by pH.

6 Comparison with a Dynamical System Model

In this section, a model of photosynthesis using a conventional method based
on differential equations is analyzed. Then the advantage of using a P system
becomes clear.
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 8. Simulation of case DS under the standard condition.

The photosynthetic reactions without the photosystem decreasing activity,
which were discussed in Section 3 are as follows:

2H2O(L)
PS,γ−→ O2(L) + 4H+(L), (10)

2NADP(S) + 2H+(S)
PS,γ−→ 2NADPH(S), (11)

4H+(S)
PS,γ−→ 4H+(L), (12)

ADP(S) + P(S) + nH+(L) → ATP(S) + nH+(S), (13)
CO2 + 4NADPH → CH2O + 4NADP + H2O, (14)

2H2O(L)
PS,γ−→ O2(L) + 4H+(L), (15)

O2(S) + 4H+(S)
PS,γ−→ 2H2O(S), (16)

4H+(L) + O2(L) → 2H2O(L), and (17)
2NADPH(S) + 2H+(S) + O2(S) → 2H2O(S) + 2NADP(S). (18)

In the above reactions, the number of molecules of H2O, O2, ADP, ATP, and
CO2 can be considered to be constant because they are supplied from air or
stabilized by other mechanisms. Thus, the number of NADP, H+ in stroma,
and H+ in lumen are variable. The number of NADPH is dependent on NADP
since the total number of NADP and NADPH is constant.

Then we can write a dynamical system with three differential equations:

dN

dt
= (1 − 2r2)N + (r5 + 2r9)(TN − N), (19)
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

210 iterations

Fig. 9. Simulation of case DV under the standard condition.

dHS

dt
= (1 − 6r1 − 4r7 − 2r9)HS + r5CATP , (20)

dHL

dt
= (1 − r8)HL + 4r1HS + (r1 + r6)CL − r5CATP , (21)

where N , HS , and HL are the number of NADP, H+ in stroma, and H+ in
lumen, TN is the total number of NADP and NADPH, and the reaction rates
rx are given by

r1 = p1νPSII,
r2 = p1νPSI,
r5 = 2p1ν0PSI,

r6 = r7 =
{

0, N ≥ θNADP,
r1, otherwise,

r8 = r9 =
{

0, HL ≤ θH+ ,
1−exp−p8(HL−HS)

4 , otherwise.

Equations (19) to (21) are highly nonlinear and cannot be solved analytically.
As a first step to treat the dynamical system, we consider the case where

there are no photoinhibition reactions (reactions (15) to (18)). Then coeffi-
cients r6, r7, r8, and r9 become 0. So equations (19) to (21) look like

dN

dt
= (1 − 2r2)N + r5(TN − N), (22)
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

20000 iterations

Fig. 10. Changes of values under extremely small p1 and p′
1 for case EN with 20000

iterations.

dHS

dt
= (1 − 6r1)HS + r5CATP , (23)

dHL

dt
= HL + 4r1HS + r1CL − r5CATP , (24)

that is, they become linear differential equations. The solutions are

N = AkekN t − r5TN

kN
, (25)

HS = ASekSt − r5CATP

kS
, (26)

HL =
4r1AS

kS − 1
ekSt + C + C0, (27)

where Ak, AS , and C0 are integral constants which should be determined by
the initial conditions. kN , kS , and C are given by

kN = 1 − 2r1 − r5,

kS = 1 − 6r1,

C = −r1CL + r5CATP − 4r1r5CATP

kS
.

One can easily see that solutions (25) to (27) are by no means realistic. The
values N , HS , and HL tend to ∞ or 0 because they are dominated by the
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pH in lumen

pH in stroma

number of PSIIh

NADPH in stroma

1,000

PSIIh and
NADPH

pH 4

pH 5

pH 6

20000 iterations

Fig. 11. Changes of values under extremely small p1 and p′
1 for case DN with 20000

iterations.

term ekt with a real valued constant k. The observation tells us that the
photoinhibition has an essential role in photosynthesis.

Now we assume θNADP = ∞ and θH+ = 0; in other words, we assume that
photoinhibition always occurs. Then equations (19) to (21) become

dN

dt
= (1 − 2r2)N + (r5 +

1
2
p8(HL − HS))(TN − N), (28)

dHS

dt
= (1 − 10r1 − 1

2
p8(HL − HS))HS + r5CATP , (29)

dHL

dt
= (1 − 1

4
p8(HL − HS))HL + 4r1HS + 2r1CL − r5CATP . (30)

Equations (28) to (30) are again nonlinear. We compute equilibrium values
by putting dN

dt = dHS

dt = dHL

dt = 0:

0 = (1 − 2r2)N + (r5 +
1
2
p8(HL − HS))(TN − N),

0 = (1 − 10r1 − 1
2
p8(HL − HS))HS + r5CATP ,

0 = (1 − 1
4
p8(HL − HS))HL + 4r1HS + 2r1CL − r5CATP .

The equations are of the third degree in HS and HL, and general solutions are
very complex. That is why we solve them with the same numerical parameters
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with which computer simulations of Photo are done. The parameter values are
shown below.

p1 ν0 CPS TN CATP CL p8

10−8 1000 1000 1000 500 30000 10−5

Table 8 shows the equilibrium values of differential equations (28) to (30) for
ν = 1000 and ν = 10000.

Table 8. Numerical values of equilibrium of equations (28) to (30).

ν = 1000 ν = 10000

N 211.5 140.5

HS 9.1 3.8

HL 399789 526320

The equilibrium values resemble to some extent the results of simulations
of Photo without the photosystem decrease activity of PSII. However, they
also have unrealistic values in HL. Moreover, we cannot know the changes
of variables. Of course, numerical integration on a computer would give the
behavior of the variables of the differential equations (28) to (30), but it is
much simpler to construct a model using P systems and to simulate it on
a computer than to construct a system of differential equations and then
integrate it numerically.

7 Conclusion

We have discussed the effects of membrane-embedded objects or inner re-
gions of membranes on P systems and, as an application, we have built a P
system-like model called Photo which simulates the photosynthesis of plants.
Since these attempts are in a preliminary state, we have addressed only a few
problems and many issues are left for future research.

Results of simulations of Photo fit into several biological situations: no
light, moderate light, photoinhibition under strong light, and a suggested
mechanism of photoinhibition is supported. The results offer some hypotheses:

1. Photoinhibition is sensitive to pH.
2. Photoinhibition is insensitive to concentration of NADP.
3. There is a trade-off between probabilities of occurring reactions and the

number of iterations of rules.

Two of these hypotheses (1 and 2) should be compared to the observed data
about real plants. The third (3) should be checked by further theoretical and
experimental investigations of IR-subset transforming systems.
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Further efforts for improving Photo by incorporating biological facts are
necessary. Photosynthesis is a set of complex reactions. There are important
reactions, for instance, the dark reactions, which are not treated by the current
version of Photo. However, Photo will be able to handle the dark reactions,
because it is easy to add more rules to IR-subset transforming systems, and
then we can analyze them on a computer.

As a conclusion, we again stress the fact that P systems and their vari-
ants are much more suitable as a tool for modeling and analyzing biological
phenomena than traditional systems of differential equations.
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Summary. We present an approach to modeling and simulating the protein p53

signaling pathways by means of a particular class of P systems, called ARMS (Ab-

stract Rewriting Systems on Multisets). The results of the computer simulations are

presented; they agree with the biological observations.

1 Abstract Rewriting Systems on Multisets

Living systems can be seen as huge chemical systems, where numerous sub-
stances interact with each other. Abstract Rewriting Systems on Multisets
(ARMS), a class of P systems based on multiset processing but with a simple
membrane structure, was introduced with the aim of modeling such chemical
systems [23].

In ARMS, substances interact with each other according to reaction rules,
which change the amounts of the substances. Reaction rules are of the form,
customarily used in chemistry, u → v, where u and v are multisets of
molecules/reactants. Reactions occur at rates which depend on the amount
of the substances from u.

The state of the system is represented by the amounts [x] of the chemical
substances (for generality, we use “amount” rather than “concentration” or
“number of molecules”). When the reaction u → v occurs, the amount of
substances x from u decreases from [x] to [x]−1 and the amount of substances
y from v increases from [y] to [y] + 1.

ARMS is a stochastic model, where rules are applied probabilistically. The
probabilities are given by basic concepts of stoichiometric chemistry (for com-
pleteness, we present in Appendix A some basic elements of stoichiometry).

Various types of ARMS have been proposed and used for modeling a proto-
cell [22], investigating the symbiotic mechanisms of an ecological system [20],
considering a novel theory of evolution [18], and so on.
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2 Modeling p53 Signaling Pathways by Using ARMS
with Membranes

The p53 signaling network plays a major role in cell survival, and it safe-
guards against genetic instability, which leads to tumor formation. However,
the complicated structure hampers modeling with the ordinary rate equation
model.

The p53 signaling network has been studied intensively because over 50%-
55% of all human cancers are reported to p53 gene mutations [8].

Fig. 1. The p53 signaling network

The p53 protein is a transcription factor which plays a major role in regu-
lating the response of mammalian cells to stresses and damage, mainly through
the transcriptional activation of genes involved in cell cycle control (G1 ar-
rest), DNA repair, senescence, and apoptosis [12]. In normal cells, p53 is a
short-lived and non-abundant protein because of its rapid degradation [12],
and probably exists in a latent, inactive form [11], [9]. However, once a cell
has a DNA damage, p53 transforms itself from latent to active conformation
through tetramerization and translocates from the cytoplasm to the nucleus
[16]. p53 has two levels of activation, depending on the level of DNA damage.
The weakly activated p53 prevents damaged cells from proceeding in the cell
division cycle and promotes DNA repair. The highly activated p53 induces
apoptosis and eliminates mutated or irrevocably DNA damaged cells.



Modeling p53 Signaling Pathways by Using Multiset Processing 205

To delay the p53-induced apoptosis and permit cells that are not irretriev-
ably damaged or mutated to survive, p53 forms the autoregulatory negative
feedback loop with MDM2 oncoproteins. In addition, the survival factor pro-
motes activation of MDM2 through PI3K-PDK1-Akt signaling and transloca-
tion of MDM2 from cytoplasm to nucleus, which downregulates the activity
of p53. Moreover, the growth factor inhibits MDM2 activation through Arf
protein, which upregulates the activity of p53. Then, p53, which forms an
active conformation, inhibits MDM2 activation through PTEN protein and
caspase activation, whereas p53 induces MDM2, which provides DNA dam-
aged cells the opportunity for DNA repair. Subsequently, p53 induces PTEN,
which then induces the death of mutated or irrevocably DNA damaged cells.
p53 and MDM2 are networked with a high complexity to keep the cell normal
and eliminate mutated cells [13].

In order to model these processes, we need a P system with two mem-
branes, one representing the nucleus and one enclosing the cytoplasm; that is
why we label them n and c, respectively. Therefore, the membrane structure
is [

c
[
n

]
n

]
c
.

The reaction rules of the p53 signaling network are given in Table 1, in the
multiset rewriting form customarily used in membrane computing, with the
substances from their right hand side having target indications in or out in the
case in which they are moved from one region of the system to another (the
substances of each multiset are given by their names, and separated by a space;
instead of the empty multiset, we write “vanish” for a better readability).

Rules in cytoplasm (the set Rc):

p53 → vanish,

p53 → (p53, in),

Rules in nucleus (the set Rn):

p53 p53 p53 p53 → p53-tetramer,

p53-tetramer → p53-tetramer MDM2,

p53 MDM2 → vanish,

MDM2 → (MDM2, out),

p53-tetramer MDM2 → (p53 p53 p53 p53, out),

p53-tetramer DNA-damage → p53-tetramer+ DNA-damage,

p53-tetramer+ DNA-damage → p53-tetramer.

Table 1. Reaction rules of the p53 signaling network.

The evolution of the P system described above was simulated on computer;
the results are shown in Figure 2 and they indicate how p53 induces the MDM2
oncoprotein.

Biologically, MDM2 is phosphorylated by survival signaling through the
PI3-kinase-PDK1-Akt pathway, which promotes rapid p53 degradation. We
have summarized these interactions in the rule
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p53 MDM2 → vanish

from Rn. Thus, p53 and MDM2 form an autoregulatory negative feedback
loop.

Fig. 2. The results of the simulation.

Once DNA damage increases, p53 is activated and translocated from the
cytoplasm to the nucleus. The activated p53 complex induces PTEN protein
and caspase activation that inhibit MDM2 activation. We have summarized
these interactions in the rule

p53-tetramer DNA-damage → p53-tetramer+ DNA-damage

from Rn, where + indicates that p53-tetramer was activated. It forms the
positive feedback loop to accelerate the p53 activation. In brief, p53 induces
MDM2, which provides DNA damaged cells the opportunity for DNA repair.

The results of the simulation agree with biological knowledge: when the
DNA is damaged (the “abnormal state” in Figure 2), p53-tetramer is acti-
vated, it repairs DNA damage, and after the damage is repaired p53-tetramer
returns to the normal state and is degraded by MDM2 into single p53. Then
these p53s and MDM2 form the autoregulatory negative feedback loop (“nor-
mal state” in the figure).

The feedback loop of p53 and MDM2 was predicted by a model based on
differential equations [2] and then verified by biological experiments.

Here we have modeled the p53-MDM2 system in terms of multiset pro-
cessing, a framework completely different from that in [2], but the results are
similar.
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3 Conservation Analysis of the p53 Signaling Network

Since ARMS is a model of stoichiometric chemistry, we can investigate the sig-
naling network by using conservation analysis, which is a method for analyzing
stoichiometric networks (in Appendix B we briefly present this method).

The stoichiometric matrix of the p53 signaling network is as follows:

M =



















a b c d e f g h i
MDM2 in c 0 0 0 0 0 1 0 0 0

p53 in c −1 −1 0 0 0 0 4 0 0
p53 in n 0 1 −4 0 −1 0 0 0 0

p53-tetramer in n 0 0 1 0 0 0 −1 −1 1
p53-tetramer+ in n 0 0 0 0 0 0 0 1 −1

MDM2 in n 0 0 0 1 −1 −1 −1 0 0



















.

To examine the flux balance of the system, we solved the matrix equation
Nv = 0 and obtained the following conditions for the rate vector v: a = f, c =
d = g, e + f = 0, 4g − (b + f) = 0, h = i. If v satisfies these conditions, the
system goes to a steady state, Nv = 0. However, the condition e + f = 0
means that one of e and f must be negative. Thus, since we do not assume
reversible reactions, the system cannot reach the stoichiometric steady state.
As for the dependencies of reactions,

p53-tetramer MDM2 → (p53 p53 p53 p53, out) ∈ Rn

depends on the reactions

p53 → (p53, in) ∈ Rc,

MDM2 → (MDM2, out) ∈ Rn.

This indicates that the degradation of the p53 tetramer in the nucleus
depends on the fluxes of translocation of p53 (from the cytoplasm to the
nucleus) and MDM2 (from the nucleus to the cytoplasm).

Next we examined the moiety conservation; since rank(M) = 6, all sub-
stances are independent. This indicated that there are no structural conserved
cycles in the network.

However, in the experimental results of the simulation we can see several
cycles in subspaces of the system. The conditions of generating cycles were
given by the flux balance analysis, the conditions of rate vector (a = f, c =
d = g, e + f = 0, 4g − (b + f) = 0, h = i). For example, if the reaction rate of
the rule

p53-tetramer MDM2 → (p53 p53 p53 p53, out) ∈ Rn

is four times larger than the sum of the reaction rates of the rules

p53 → vanish ∈ Rc, p53 → (p53, in) ∈ Rc,

then p53 in the cytoplasm shows oscillation. In turn, if the reaction rate of

p53 p53 p53 p53 → p53-tetramer ∈ Rn
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is 1/4 times larger than the subtraction of the reaction rate of

p53 → (p53, in) ∈ Rc, p53 MDM2 → vanish ∈ Rn,

then the p53 in the nucleus shows oscillation.

4 Final Remarks

Biological processes in the cell are the result of the interactions among a
limited number of molecules in a limited space. Moreover, the number of
molecules is not a continuous quantity but a discrete quantity.

Multiset processing is a simple technique, easy to be used by biologists,
which contrasts with most continuous models and simulation systems. In par-
ticular, ARMS is based on stoichiometric chemistry, and if the number of
elements in the system is large, then the behavior of the system is similar to
the behavior of models based on differential equations or Markov models (the
master equation [19]). Thus, when we consider the dynamical properties of
ARMS, we can apply mathematical methods developed for analyzing differ-
ential equations or for Markovian analysis and we can also use conservation
analysis.

A living system is a huge chemical system, so multiset processing in the
framework of membrane computing can help biologists analyze the compli-
cated biological processes taking place in living systems.

Appendix A (Stoichiometric Chemistry)

We start with an example: the net reaction for the formation of nitrogen
dioxide (NO2) from nitrous oxide (NO) and oxygen (O2) is

2NO + O2 → 2NO2, (1)

which indicates that two molecules of nitrous oxide combine with one molecule
of oxygen to form two molecules of nitrogen dioxide.

Chemists use this type of notation in describing any chemical reaction. In
general, any chemical reaction can be described in the form

aA + bB → cC + dD

where the symbols A and B stand for the reactants and the symbols C and
D stand for the products of the reaction. The constants a, b, c, and d, which
indicate the proportions in which the reactants combine and the products are
formed, are called stoichiometric coefficients.

Unfortunately, stoichiometric descriptions of reactions do not tell the whole
story. They tell us only the net result of a reaction, without telling us how
the reaction takes place. Most chemical reactions actually have a mechanism
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involving the formation of intermediate products. For example, the net re-
action (1) for the formation of nitrogen dioxide actually consists of three
subreactions, all of which occur simultaneously. A proposed mechanism for
this reaction is

2NO → N2O2 (NO reacts with itself to form N2O2),
N2O2 → 2NO (NO is reformed from some of the N2O2),

N2O2 + O2 → 2NO2 (some of the N2O2 reacts with O2 to form NO2).

The intermediate product of dinitrogen dioxide (N2O2) does not appear in
the net reaction (1), but it is involved in the mechanism of the reaction and,
hence, a mathematical model of the reaction must take the presence of N2O2

into account.

Units of Measurement and Notations. Since molecules are very small,
quantities of molecules are measured in units of moles. One mole of molecules
is an Avogadro’s number of molecules. Avogadro’s number is approximately
6.022. Hence, for example, two moles is the same as 12.044 molecules. Concen-
trations of molecules in a solution are measured in units of molarities (M). One
molarity is one mole of solute per liter of solution. For example, a 2M aqueous
solution of sodium chloride (NaCl) is a solution consisting of two moles of
NaCl per each liter of solution. The notation [A] denotes the concentration
(in molarities) of a molecule A in solution. Thus, if we write [NaCl] = 2M ,
we mean that we have a solution with a 2M concentration of sodium chloride.

Rates of Reactions. Consider a simple chemical reaction of the form

2A + B → C.

This reaction involves the combination of two molecules of A and one molecule
of B to form one molecule of C. Because we are assuming that the reaction is
simple (i.e., there are no intermediate steps), the concentration of A decreases
at twice the rate that the concentration of B decreases. Thus, we have

d[A]

dt
= 2

d[B]

dt
.

Also, the concentration of C increases at the same rate that the concentration
of B decreases, so

d[C]

dt
= −d[B]dt.

We can summarize the above two equations by writing

−
1

2

d[A]

dt
= −

d[B]

dt
=

d[C]

dt
.

In general, for a simple chemical reaction of the form
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aA + bB → cC + dD,

we have

−
1

a

d[A]

dt
= −

1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt

and we define the rate of the reaction, v(t), as this common value. That is,

v = −
1

a

d[A]

dt
= −

1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
.

Since the stoichiometric coefficients a, b, c, and d have no units, v has
units of M/time. We stress that the reaction rate v is a function of time (t)
because the reaction slows as the reactants are used up during the course
of the reaction. The units of measurement of time for a particular reaction
depend on the speed of the reaction. For a reaction that proceeds very quickly,
it might be appropriate to measure time in seconds or milliseconds, whereas
for a very slow reaction, such as the decay of some radioactive compounds,
time is measured in years.

The Rate Law. An important concept of chemistry that is crucial to the
development of mathematical models of chemical reactions is the rate law.
For the homogeneous reaction

aA + bB → cC + dD

with reaction rate v, the Rate Law gives the equation

v(t) = k[A]α[B]β (2)

Equation (2) is the framework on which mathematical models of chemical
reactions are built. In this equation, the constant of proportionality, k, is called
the rate constant of the reaction, and the constants α and β are called the
order of the reaction with respect to the reactants A and B, respectively. The
constants k, α, and β can be determined only by actual chemical experiments.
In general, except possibly by coincidence, a and b are not related to the
stoichiometric coefficients α and β.

Also, α and β have no units of measurement and the units of k are de-
termined by the values of α and β in the following way. Recalling that v has
units of M/time and [A] and [B] both have units of M, by writing equation
(2) in terms of units, we obtain

M

time
= (units of k) · (M)α · (M)β = (units of k) ·Mα+β .

From this we obtain

units of k = M
time·M1−α−β = M1−α−β · times−1.
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As an example of the Rate Law, suppose that we have a reaction

2A + B → C + 2D

which is first order with respect to A and B (that is, α = β = 1), and has rate
constant k = 0.02M−1 · min−1. Suppose also that this reaction takes place
in a container of fixed volume. The Rate Law then gives us the rate of this
reaction as

v = 0.02[A]−1[B]−1 (3)

Note that the stoichiometric coefficients play no role in the rate equation
(3). However, if we wish to rewrite the rate equation in terms of the rate of
consumption of one of the reactants (or the rate of formation of one of the
products), then the stoichiometric coefficients do play a role. For example,
using the fact that

v = −
1

2

d[A]

dt
,

we obtain the rate equation

v = −
1

2

d[A]

dt
= 0.02[A][B]

or equivalently
d[A]

dt
= −0.04[A][B] (4)

for the rate of consumption of reactant A. Equation (4) is an example of a
differential equation. In this equation, [A] and [B] are “unknown” functions
of time and d[A]/dt is the derivative of [A] with respect to t. Likewise, we
obtain the following differential equations for the concentrations of B,C, and
D:

d[B]

dt
= −0.02[A][B],

d[C]

dt
= 0.02[A][B],

d[D]

dt
= 0.04[A][B].

With respect to the definition of the Rate Law, for the homogeneous re-
action aA + bB → cC + dD with reaction rate v, the rate law in ARMS is
defined as the same equation, v(t) = k[A]a[B]b. In a single step of rewriting,
the rules are applied randomly with probabilities depending on the rate law.
The probability of ri ≡ aA + bB → cC + dD is defined as

Prob(ri) =
ki[A]a[B]b

R
,

where ki is the rate constant and R is a coefficient for normalizing the prob-
abilities (ΣiProb(ri) = 1).

In the limit, from systems of a large size one obtains a set of deterministic
differential equations.
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Appendix B (Conservation Analysis)

The analysis of stoichiometric networks was undertaken in the 1960s in the
chemical engineering community [1].

Stoichiometry Matrix. The analysis of stoichiometric network starts by
considering the network topology. This information is embodied in the stoi-
chiometry matrix, N . The columns of this matrix correspond to the distinct
chemical reactions in the network, the rows to the chemical substances, one
row per species. Thus the intersection of a row and column in the matrix
indicates whether or not a certain species takes part in a particular reaction
and, if so, according to the sign of the element, whether it is a reactant or
a product, and, by the magnitude, the relative quantity of substance that
takes part in that reaction. Stoichiometry is thus concerned with the relative
mole amounts of chemical species that react in a particular reaction; it is not
concerned with the rate of reaction. The stoichiometry matrix is therefore con-
stant (in biological applications, it is determined by the genetic constitution
of the organism).

The stoichiometric matrix represents a compact mathematical represen-
tation of a biochemical network. If a given network is composed of m sub-
stances involved in n reactants, then the stoichiometric matrix is an m × n
matrix. Only those substances which evolve through the dynamics of the sys-
tem are included in this count. Any source and sink substances needed to
sustain a steady state (non-equilibrium in the thermodynamic sense) are set
at a constant level and therefore do not have corresponding entries in the
stoichiometry matrix.

System Equation. In order to fully characterize a system one needs to con-
sider the kinetics of the individual reactions as well as the network topology.
Modeling the reactions with differential equations, we arrive at a system of
equations which involves both the stoichiometry matrix and the reaction vec-
tor

dS

dt
= Nv,

where N is the m × n matrix and v is the n dimensional rate vector, whose
ith component gives the rate of reaction i as a function of the concentration
of substances.

Structural Properties. There are two key structural properties which can
be derived from the stoichiometry matrix. These are flux balance constraints
and mass conservation constraints, both of which are derived from the law of
conservation of mass.

The flux balance constraints are valid only when the system is in a steady
state, where each molecular concentration reaches a steady state value. As a
result, the sum of all fluxes into a species pool must equal the sum of all fluxes
out of the pool:
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Σ Fluxes in = Σ Fluxes out.

For each species, this is equivalent to the statement that Niv = 0, where Ni

is the ith row of N . We arrive then at the matrix equation Nv = 0.
This constraint is imposed on the distributions of steady state fluxes at

all nodes in the network, and is in direct analogy with Kirchhoff’s first law of
current flow. Thus to characterize the steady state flow through this system,
we need only measure two of the fluxes, as the third is then determined. In
general, one can divide the set of the fluxes into two subsets, the indepen-
dent fluxes, and the dependent fluxes. The independent flux can take any
values, while the values of the dependent fluxes are fixed by the independent
fluxes and the flux constraints. This dependence is the essence of flux balance
analysis.

Moiety Conservation Analysis. Molecular subgroups which are conserved
during the evolution of a network are termed conserved moieties [17]. The
total amount of a particular moiety in a network is time invariant and is
determined solely by the initial conditions imposed on the system.

Moiety conservation analysis plays a dual role to the analysis of flux bal-
ance. Whereas flux balance is concerned with the conservation of mass as it
flows into and out of species nodes, moiety conservation analysis is concerned
with the conservation of mass as it moves around closed loops in the network.
Again we see a direct analogy to electrical engineering since moiety conser-
vation analysis is related to Kirchhoff’s second law of potentials. Conserved
moieties in the network reveal themselves as linear dependencies in the rows of
the stoichiometry matrix. The question then arises: how, given a stoichiometry
matrix, can we identify linear dependencies and determine the corresponding
conserved moieties? Whenever the network exhibits conserved moieties, there
will be dependencies among the rows of N , and the rank of N (rank(N)) will
be less than m, the number of rows of N . The rows of N can be rearranged so
that the first rank(N) rows are linearly independent. The metabolites which
correspond to these rows can then be defined as the independent species (Si).
The remainining m − rank(N) are the dependent species (Sd). Note that if
there are no structural conserved cycles in the network, then m is equal to
rank(N).
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Summary. This chapter deals with the application of P systems to sorting prob-

lems. Traditional studies of sorting assume constant time for comparing two numbers

and compute the time complexity with respect to the number of components of a

vector to be sorted. Here, we assume the number of components to be a fixed num-

ber k, and study various algorithms based on different models of P systems and

their time complexities with respect to the maximal number or to the sum of the

numbers. Massively parallel computations that can be realized within the frame-

work of P systems may lead to major improvements in solving the classical integer

sorting problems. Despite this important characteristic, we will see that, depending

on the model used, the massive parallelism feature cannot be always used, and so

some results will have complexities “comparable” with the classical integer sorting

algorithms. Still, computing a word (ordered) from a multiset (unordered) can be a

goal not only for computer science, but also, e.g., for biosynthesis (separating mixed

objects according to some characteristics). Here, we will move from ranking algo-

rithms that, starting with numbers represented as multisets, produce symbols in an

order, to effective sorting algorithms.

1 Introduction

The sorting problem is an important one in computer science and many algo-
rithms, both sequential and parallel, were developed for solving it. However,
the time complexity remains at least O(n log(n)) for the sequential case and
O(log2n) for the parallel case.

Studying sorting within the P systems framework is a challenging task
not only because it can produce better results (in some respects) than the
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classical sequential case, but also because we can compute a string (ordered)
from a multiset (unordered) of objects. Moreover, one can remark that in the
case of cooperative rules (in P systems with symbol objects and rewriting-like
rules) the order of symbols on the left/right hand side of a production does
not count. So, we deal with two “types of disorder” and can still compute an
“order.”

One of the first approaches to sorting with P systems was taken in [3]
by considering a bead sort algorithm. There, the sorting procedure was con-
structed on a tissue P system with symport/antiport rules such that the ob-
jects were considered beads and the membranes were considered rods. The idea
of the algorithm was that beads start to slide in the membrane structure to
their appropriate places. The time complexity for this case was linear, which
constitutes an improvement over the classical sequential sorting algorithm.
However, the tradeoff for this was that it required a number of membranes
proportional to m× k, where m is the maximal number from the vector that
we want to sort and k is the dimension of the vector.

Another study on this topic was done in [5], where the P systems with
inhibitors/promoters and symport/antiport rules were used to develop com-
parators and then to organize them in a sorting network. As in the previous
case, the input data was placed in different membranes and the computation
started operating on elements already dissociated. The result was not ob-
tained in a halting configuration but in a stable one, meaning that there were
rules still applicable, but their application did not change the string/object
contents of the membranes or the membrane structure. The time complex-
ity was linear with respect to the number of components, and the number
of membranes used in the computation was proportional to the number of
components.

In [2], other methods and algorithms for the sorting problem are proposed
by considering several variants of P systems. The feature shared by many
algorithms from [2] is that the input components are placed in an initial input
membrane and the computation dissociates this input according to the relation
order among the multiplicities of components. In this way, we interpret the
sorting as the order of elimination of the objects. The idea behind many
of these algorithms (also presented below) is to consume objects from all
components at once and, when one component is exhausted, to trigger a signal
to find the next component to be eliminated. In other algorithms, we developed
a comparator, using very weak “ingredients,” which can be used practically in
any sorting network design. For most of the algorithms the time complexity
will be also linear, while for others it will depend on the largest multiplicity.

Finally, a sorting algorithm based on the existing ranking algorithm was
proposed in [10].

The chapter is structured into three main parts corresponding to the type
of problem that is solved: the strong sorting, the weak sorting, and the rank-
ing. All these concepts will be defined below. In addition, the P system models
considered in the paper are introduced in the following section, where a brief
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introduction to the framework is made. The last section is dedicated to con-
clusions and open problems.

2 Preliminaries

2.1 P Systems

The reader is supposed to be familiar with basic elements of membrane com-
puting, e.g., from [9], so that here we specify only some notations and termi-
nology used below.

A P system (of degree m ≥ 1) with symbol objects and rewriting evolution
rules is a construct

Π = (O,C, µ,w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), I, J),

where:

• O is the alphabet of Π; its elements are called objects;
• C ⊆ O is a set of catalysts;
• µ is a membrane structure consisting of m membranes usually labeled 1,

2, . . . ,m;
• wi, 1 ≤ i ≤ m, specify the multisets of objects present in the corresponding

regions 1, 2, . . . ,m, at the beginning of a computation;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with

regions 1, 2, . . . ,m of µ; the rules are called (1) non-cooperative if they are
of the form a → v where a is an object from O − C and v is a string
over {ahere, aout, ain | a ∈ O − C}, and (2) catalytic if they are of the
form ca → cv, where a is an object from O − C and v is a string over
{ahere, aout, ain | a ∈ O − C, 1 ≤ j ≤ m} and c ∈ C;

• I and J are the sets of numbers between 0 and m specifying the input
regions and output regions of Π, respectively (in case of 0 the environment
is used for the output).

Many other features were added to this basic definition of P systems; we
refer you to [9] for details. In this work we will consider the following variants
of P systems:

• P systems with weak/strong priorities. In each case, a partial order relation
ρi is given over elements of Ri, 1 ≤ i ≤ m. Weak priorities means that,
in one step of computation the rules are applied according to the priority
relation in a nondeterministic, maximally parallel manner such that a rule
can be applied only if objects remain unused by rules with a higher priority.
Strong priorities means that in a computation step, only the rules with
the highest priority among those which can be applied are applied, in a
maximally parallel manner (that is, even if unused objects remain, a lower
priority rule cannot be used).



218 A. Alhazov, D. Sburlan

• P systems with target indications where the right hand string of an evo-
lution rule is defined over {ahere, aout, ainj

| a ∈ O − C, 1 ≤ j ≤ m}. This
means that if a symbol ainj

is present, then the object a will be moved to
the inner membrane labeled j.

• P systems with promoters/inhibitors. In the case of promoters, the rules
(reactions) are possible only in the presence of certain objects which can
evolve at the same time as objects whose evolutions they support. In-
hibitors forbid certain rules (reactions). We denote these features by con-
sidering rules of the forms u→ v|a and u→ v|¬a, respectively.

• P systems with finitely stable catalysts for which the evolution rules con-
taining catalysts are of the form cia → cjv, where a ∈ O − C, c ∈ C and
i, j ∈ Mc, with Mc being a given set of integers associated with c, and v
is a string over {ahere, aout, ain | a ∈ O − C}. The catalysts are neither
created nor destroyed during the computation, but they can change their
“state” as specified by Mc.

• P systems with mobile catalysts. This model is an extension of the original
model, permitting catalysts to move between regions. In this case a rule
involving catalysts is written in the form ca→ cαv, where a ∈ O−C, c ∈ C,
α ∈ {here, out, in}, and v is a string over {ahere, aout, ain | a ∈ O − C}.

• P systems with symport/antiport rules. In this case the rules provide syn-
chronized movement of objects. In this way, particular sets of objects may
pass together through a membrane in the same or opposite direction (these
objects need each other for the transport). Formally, in the case of symport
this means that the rules are of the form (ab, in) or (ab, out), indicating
that the objects a and b pass together through a membrane. In the an-
tiport case, the rules are of type (a, out; b, in), indicating that while object
a goes out, object b enters in the region.

• P systems with membrane dissolution. Rules may act directly on the mem-
brane structure by dissolving membranes. Formally we represent this by
rules of type u → vδ, where δ means that, after finishing the actual step
of computation, the current membrane will be dissolved and all the inner
objects will pass to the upper region.

• P systems with membrane division. In this case the membranes are al-
lowed to divide and to participate as active components in the process of
computation.

• Evolution-communication P systems. In this variant, evolution rules that
are simple, i.e., do not move the objects, and communication rules that are
pure, i.e., do not change the objects, coexist. See [1, 4] for exact definitions,
results, and details. Generally, symport rules of weight 1, antiport rules
of weight 1, and non-cooperative simple evolution rules provide enough
computational power.

• P systems with string objects. Unlike all other variants considered here,
the regions contain strings rather than symbols. In this model, the string
objects evolve by rewriting, and the rewriting is sequential at the level
of symbols in the strings. It is trivial to perform any computation using
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cooperative rules. In our solutions we will employ only non-cooperative
rules with priorities to solve the sorting problem.

A P system with the features mentioned starts to evolve from the initial
configuration by performing all operations in a parallel way for all applica-
ble rules, for all regions at the same time and according to a universal clock.
A computation is successful if and only if it halts, meaning that no rule is
applicable to the objects present in the final configuration. We will assume
that the system ejects objects in the environment (external output) and, to
obtain strings, we concatenate these symbols according to the order in which
they come to the environment. When more objects arrive at the same time in
the environment, we consider the strings formed by all permutations of these
objects. The language generated by a P system Π is the language L(Π), con-
taining all the strings produced by all successful computations of Π according
to the output mode.

Another way to define the result of the halting computation is to consider
the number of objects in the given output region. In this case, a P system
Π generates a set N(Π) of numbers, corresponding to all its halting compu-
tations. Many types of P systems, using various combinations of ingredients
as described before, are known to be universal – they generate the same lan-
guages/sets of numbers as Turing machines. We refer the reader to [9], [8], [6],
and [7] for details.

These features added to the original model are very useful in designing
different ways of performing comparisons, and so the idea of solving the sorting
problem in this framework is completely natural.

We also remark that proving universality by using matrix or programmed
grammars, register machines, or other constructions (as they are known in
the literature) usually involves nondeterministic approaches as well as the
use of a “trap symbol” which guarantees that the system works forever in
the “wrong” cases. In contrast, when solving a practical problem we have
to find an algorithm working in a deterministic or confluent way and this is
because we need to receive the answer of the problem in a specified time. In
addition, the system has to stop or reach an equilibrium state after finishing
the computation so that the output can be read. These issues, combined with
the fact that in a multiset we do not have an ordering of the elements, give a
hint of the difficulty of addressing the sorting problems in terms of P systems.

2.2 Sorting Networks

One parallel model for studying integer sorting problems is based on the
comparison network, where more comparison operations can be executed at
the same time. This feature offers the possibility to construct such networks,
which sort k numbers in sublinear time.

A comparison network is built of wires and comparators. A comparator is
a device that has two inputs X and Y , and computes the function



220 A. Alhazov, D. Sburlan

(X,Y ) −→
(

min(X,Y ),max(X,Y )
)

.

The sorting network consists of input wires, output wires, and compara-
tors. In a comparison network, wires are responsible for passing information
from one comparator to another. Essentially, such a network contains only
comparators, linked together with wires, because we can consider that input
wires and output wires are also nodes (like comparators), but they do not
compute anything, and just store a value.

Formally, a comparison network is a directed acyclic graph where the nodes
are comparators, input nodes, or output nodes, and the directed arcs are wires.

A sorting network is a comparison network that produces as output a
monotone sequence for any input sequence. The running time of a comparison
network is the time elapsed from the initialization of the input nodes to the
time when the values reach the output nodes. A typical sorting network is
presented in Figure 1.

Input

wires

Output

wires

± M

Á ]

U ®

/ z9

Columns of comparators

6
Interconnection network

Fig. 1. A general sorting network scheme.

Particular examples are the sorting network Bubblesort and the sorting
network Odd-even (see Figure 2).

The sorting network Bubblesort consists of a first diagonal of n− 1 com-
parators that move the greatest element to the last position. The remaining
n − 1 elements are sorted recursively by applying the same procedure. Bub-
blesort consists of n(n− 1)/2 comparators, arranged in 2n− 3 stages.

The sorting network Odd-even transposition sort for n input elements
consists of n comparator stages. Each stage consists of comparators [i : i + 1]
where i is odd and even in alternating order. The number of comparators is
n(n− 1)/2.
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Fig. 2. Bubblesort and Odd-even transposition sort.

3 Sorting Definitions and Notations

The alphabets we consider here are composed of natural numbers. The al-
phabet symbols are denoted by underlined numbers, so that in this way we
can distinguish the symbols and also have the implicit order associated with
natural numbers.

Let V = {i | 1 ≤ i ≤ k} be an alphabet. A word over V is denoted by

w =
∏m

j=1aj = a1a2 . . . am,

m ∈ N, where aj ∈ V for each 1 ≤ j ≤ m. Here, the product symbol
∏

represents concatenation.

Example 1. w = 23 9 157.

Let ord : V → {1, . . . , k} be a bijective function such that i = ord(i),
1 ≤ i ≤ k. Then ij = ord(aj) is an ordinal number of the jth letter of w and
aj = ij .

Let v =
∏k

j=1j be the “alphabet word,” made by concatenating the ele-
ments of the alphabet V in the natural order.

Since in multiset processing we represent multisets by strings, we will need
a few formal language definitions and notations.

Let w =
∏m

j=1aj be a string. We denote by

Perm(w) = {
∏m

j=1aij
| 1 ≤ ij ≤ m, 1 ≤ j ≤ m, with ij 6= il, 1 ≤ j, l ≤ m}

the set of permutations of string w, i.e., the set of all strings that can be
obtained from w by changing the order of symbols. We denote by

SSub(w) = {
∏l

j=1aij
| 1 ≤ ij−1 < ij ≤ m, 2 ≤ j ≤ l, 0 ≤ l ≤ m}

the set of scattered subwords of w, i.e., the set of all strings that can be
obtained from w by deleting some (0 or more, possibly all) of its symbols, and
concatenating the remaining ones, preserving the order.
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For example, the permutations of the alphabet word v are the strings having
exactly one occurrence of each letter of V in an arbitrary order. Also, the
scattered subwords of v are the strings consisting of some of the letters of V
in the alphabetic order.

Now, let us go back to the focus of the chapter – the sorting. According to
the classical definitions of what integer sorting means we can give an “equiv-
alent” definition adapted to the P systems. In this framework, we can sort
only the numbers represented by the multiplicities of the objects but not con-
sidering the corresponding objects, or we can consider both characteristics.
According to this distinction, we can define:

Definition 1. Let v =
∏k

j=1j be the alphabet word. The word

w =
∏k

j=1aj ∈ Perm(v), k = card(V ) ∈ N
+,

where aj ∈ V such that M(aj) ≤ M(aj+1), for each 1 ≤ j ≤ k − 1, is called
the ranking string of the multiset M.

Definition 2. The word w =
∏k

j=1j
M(aj) is called the weak sorting string

of the multiset M if
∏k

j=1aj is the ranking string of M . Also, M ′ : V → N

defined as M ′(j) = M(aj) is the weak sorting multiset of M .

Remark 1. This definition stands for the case when we are interested in sorting
the multiplicities of the objects and not in having to look at the correspond-
ing objects. In other words, we sort only “properties” and not “objects and
properties.” Practically, the symbols from the initial multiset are considered
to be in a complete relation order, and, after performing the computation we
obtain as the result these objects sorted according to the relation order and
having multiplicities sorted.

Definition 3. The word
w =

∏k

j=1a
M(aj)
j

is called the strong sorting string of M if
∏k

j=1aj is the ranking string of M .

Remark 2. In this case, we are interested in having as the output of compu-
tation the objects with the same associated multiplicities, present in a string
in increasing order of their multiplicities.

Example 2. For the alphabet V = {1, 2, 3} and the multiset M = {(1, 20),
(2, 10), (3, 30)}, we have:

• ranking string: 2 1 3
• weak sorting string: 110 220 330

• strong sorting string: 210 120 330

We will typically consider the starting configuration of the sorting P system
depending only on the number k = Card(V ) of components, taking as the
input the multiset

{(j, nj) | 1 ≤ j ≤ k}

over V ⊂ O placed in a specific region, where O is the system’s alphabet.
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4 Strong Sorting

Strong sorting is an algorithm which processes a multiset M and gives as

a result a word w =
∏m

j=1a
M(aj)
j if

∏k

j=1aj is the ranking string of M . A
weaker definition could be given: as the result of processing M , a string w is
produced such that for each 1 ≤ i ≤ k we have |w|ai

= M(ai) and for any
representation w = αaiβajγ we have M(ai) ≤M(aj). In the case of equality
of some numbers either a decision is made whether “=” is “≤” or “≥” (see
the below technique of unequalizer) or the weak definition is assumed.

The strong sorting is the most difficult static sorting problem. It is usually
implemented by obtaining the ranking, represented one way or the other, and
then using it to control the output process.

4.1 Using Promoters

We present an algorithm for the integer sorting problem using promoters and
cooperating rules. One can note that despite the fact that the “degree” of
cooperation is high and we use other powerful ingredients (promoters), the
problem is not trivial because we want to extract order from disorder.

Moreover, the procedure must, in a certain sense (as we will see later, there
are some algorithms for which the nondeterminism exists but will not affect
the computation) be deterministic. First we will give the general algorithm
which will work for a number k > 1 of integers.

Algorithm 1. Let v =
∏k

i=1i. Consider the P system

Π = (O, ∅, [
1

]
1
, pk, R1, {1}, {0}) with input

∏k

j=1j
nj ,

where:

O = {i,Xi | 1 ≤ i ≤ k} ∪ {y
(j)
i | 1 ≤ i, j ≤ k} ∪ {pi | 0 ≤ i ≤ k}

∪ {〈w〉 | w ∈ SSub(v)− {v}},

R = {w →
∏

|w|

j=1xj〈
∏k

j=1,j /∈alph(w)j〉|p|w|
| w ∈ SSub(v)− {ε}}

∪ {pi → pi−1 | 1 ≤ i ≤ k} ∪ {xj → j
out
| 1 ≤ j ≤ k}

∪ {yl
j → yl−1

j | 2 ≤ l ≤ k}

∪ {
∏k−1

j=1 〈
∏k

l=1ij〉 →
∏k

j=1y
(j)
i |

∏k

j=1ij ∈ Perm(v)}.

For a better understanding, we present an example illustrating the be-
havior of the system. Let us consider the case of sorting three numbers and
also, for simplicity, let us rename variables present in the general algorithm as

follows: 1 = a, X1 = a′, y
(j)
1 = Aj , 〈1〉 = 〈a〉, pi = pi, etc. A similar renaming

will be used in all examples below.

Example 3. Initial data: an1bn2cn3p3

The rules are:
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abc→ a′b′c′〈ε〉|p3
,

p3 → p2, p2 → p1, p1 → p0,
ab→ a′b′〈c〉|p2

, ac→ a′c′〈b〉|p2
, bc→ b′c′〈a〉|p2

,
a→ a′〈bc〉|p1

, b→ b′〈ac〉|p1
, c→ c′〈ab〉|p1

,
〈a〉〈ab〉 → A1B2C3, 〈a〉〈ac〉 → A1C2B3, 〈b〉〈bc〉 → B1C2A3,
〈b〉〈ab〉 → B1A2C3, 〈c〉〈ac〉 → C1A2B3, 〈c〉〈bc〉 → C1B2A3,
A3 → A2, A2 → A1, B3 → B2, B2 → B1, C3 → C2, C2 → C1,
a′ → aout|A1

, b′ → bout|B1
, c′ → cout|C1

.

Description of the model. The system starts with objects an1 , bn2 , cn3 ,
p3; let us suppose, without loss of generality, that we have n1 ≥ n2 ≥ n3.
First, in the presence of the promoter p3 the rule abc → a′b′c′〈ε〉|p3

will be
used. We apply this rule (in one step) a number of times equal to the smallest
multiplicity of the objects (n3) and add to the membrane the objects a′n3 ,
b′n3 , c′n3 , 〈ε〉n3 . In the same step, the promoter p3 will be used by the rule
p3 → p2. In the second step of computation, the promoter p2, being present
in the membrane, will let the rule ab → a′b′〈c〉|p2

be applied n2 − n3 times.
As above, at the same time, the promoter p2 will change to p1 and so the
configuration of the system for the region will contain the objects

a′(n3+(n2−n3)), b′(n3+(n2−n3)), c′(n3), 〈c〉(n2−n3), 〈ε〉n3 , a(n1−n2), p1.

In the third step, the remaining objects a will be transformed into objects a′

and 〈bc〉. Since the number of objects a which remained after the second step
was a(n1−n2), we will add to the membrane n1− n2 copies of a′ and the same
number of copies of 〈bc〉. The objects present in the membrane will be:

a′n1, b′(n2), c′(n3), 〈ε〉n3 , 〈c〉(n2−n3), 〈bc〉(n1−n2), p0.

Now, there are only the objects 〈c〉 and 〈bc〉 that can react, and so the symbols
C1B2A3 will be produced. These symbols, with a corresponding “delay” (im-
plemented through some renaming of the symbols), will be used as promoters
to throw out the symbols in the correct order.

Of course, the model, being symmetrical in what concerns the rules, has a
behavior that does not depend on the order between the initial multiplicities,
and will produce as output the objects in the correct order.

Theorem 1. The time complexity for the strong sorting algorithm with P
systems with promoters is 2k + 1 where k is the number of elements to be
sorted, and it is constant with respect to the values of the elements. However,
the number Card(O) of different objects used is exponential with respect to k.

4.2 Unequalizer Technique

In the previous section, the sorting was successful only if all the elements were
different. This technique allows us to solve the general problem by reducing
it to the sorting of different numbers at the price of adding one step in the
beginning and changing the last step.
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Algorithm 2. (considered for one membrane for simplicity) Let v =
∏k

i=1i.

Given Π = (O, ∅, [
1

]
1
, β, R, {1}, {0}) with input

∏k

j=1j
nj , consider Π ′ =

(O′, µ, p, R′, {1}, {0}) with input
∏k

j=1z
nj

j , where O′ = O ∪ {p} ∪ {zj | 1 ≤
j ≤ k} and R′ is obtained from R by excluding all output rules and adding

{p→ β
∏k

i=1i
i−1} ∪ {zi → ik} ∪ {αXk → αiout|C | (αX → αziout |C) ∈ R}.

Example 4. Initial data: an1

0 bn2

0 cn3

0 p4

Rules at the beginning of the computation: add

p4 → p3bcc, a0 → aaa, b0 → bbb, c0 → ccc.

Rules for the output: change X → Yout to XXX → Yout; in this case we have

a′a′a′ → a0out|A1
, b′b′b′ → b0out|B1

, c′c′c′ → c0out|C1
.

Given numbers (ni)1≤i≤k, the original system is used to sort numbers

(kni + i− 1)1≤i≤j ,

and the result is then obtained by dividing the numbers by k. Constructions
with the same idea apply to other algorithms as well.

4.3 Using Inhibitors

Using inhibitors to solve the sorting problem is also a challenging subject that
can be discussed. By using this feature, we can specify when the execution of
some rules should not happen, and so we can drive the production of objects in
the right order. This feature of forbidding the execution of certain rules seems
to decrease the “cooperativeness” of the rules compared to the algorithm
using promoters. The inhibitors are important only after we have done the
computation and have the solution of the corresponding ranking problem,
but have not actually sorted. Then, by using the inhibitors we can drive the
elimination process in the correct way. The algorithm proposed for the general
case is as follows.

Algorithm 3. Let v =
∏k

i=1i. Consider the system

Π = (O, ∅, [
1

]
1
,
∏k−1

i=1

∏k

j=2〈i, 2, j〉
∏k

j=1(y
j
jIj), R1, {1}, {0})

with input
∏k

j=1j
nj , where:

O = {i, Ii, yi | 1 ≤ i ≤ k} ∪ {x
(j)
i | 1 ≤ i, j ≤ k}

∪ {〈i, l, j〉 | 1 ≤ i < j ≤ k, 0 ≤ l ≤ 2},

R1 = {i→
∏k

j=1x
(j)
i | 1 ≤ i ≤ k}

∪ {x
(j)
i x

(i)
j → ε, xj

i 〈i, 0, j〉 → yi, xi
j〈i, 0, j〉 → yi | 1 ≤ i < j ≤ k}

∪ {〈i, l, j〉 → 〈i, l − 1, j〉 | 1 ≤ i < j ≤ k, l ∈ {1, 2}}

∪ {Ijyj → Ij , x
(i)
i → iout|¬yj

| 1 ≤ j ≤ k}.
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As in the previous cases, for an easier understanding we will consider the
3-integer sorting problem.

Example 5. Initial data: an1bn2cn3〈ab〉2〈ac〉2〈bc〉2AAAABBBBCCCC
The rules are as follows:

a→ abaca0, b→ babcb0, c→ cacbc0,
abba → ε, acca → ε, bccb → ε,
〈ab〉2 → 〈ab〉1, 〈ac〉2 → 〈ac〉1, 〈bc〉2 → 〈bc〉1,
〈ab〉1 → 〈ab〉, 〈ac〉1 → 〈ac〉, 〈bc〉1 → 〈bc〉,
ab〈ab〉 → A, ac〈ac〉 → A, ba〈ab〉 → B,
bc〈bc〉 → B, cb〈ac〉 → C, cb〈bc〉 → C,
AA→ A, BB → B, CC → C,
a0 → aout|¬A, b0 → bout|¬B , c0 → cout|¬C .

It is presented in the example how the sorting algorithm works in the case
of three numbers represented as multiplicities of the three objects a, b, and c.
The system, which has only one membrane, starts with the multiset

an1 , bn2 , cn3 , 〈ab〉2, 〈ac〉2, 〈bc〉2, A,A3, B,B3, C, C3

representing the objects for which we want to sort their multiplicities, plus
some other objects which will be used during the computation for delaying the
execution of certain rules or for eliminating the objects in the right order. As
before, we assume that n1 ≥ n2 ≥ n3. First the device starts by executing in
the maximum parallel manner, in one step, the rules a→ abaca0, b→ babcb0,
and c → cacbc0. Also, at the same time, the rules AA → A, BB → B,
CC → C are executed, as well as 〈ab〉2 → 〈ab〉1, 〈ac〉2 → 〈ac〉1, 〈bc〉2 → 〈bc〉1.
The first group of rules mentioned produces the objects

an1

b , an1

c , an1

0 , bn2

a , bn2

c , bn2

0 , cn3

a , cn3

b , cn3

0

(all the objects a, b, c being transformed) while the other groups are used only
for delaying activities.

The transition to the next configuration is made by the rules abba → ε,
acca → ε, bccb → ε, which will delete from the membrane n2 copies of ab and
ba, n3 copies of ac and ca, and, finally, n3 copies of bc and cb. Simultaneously
the rules AA → A,BB → B, CC → C, as well as 〈ab〉1 → 〈ab〉0, 〈ac〉1 →
〈ac〉0, 〈bc〉1 → 〈bc〉0, are applied. This means that the configuration of the P
system in terms of the objects will be the following:

an1−n2

b , an1−n3

c , an1

0 , bn2−n3

c , bn2

0 , cn3

0 , A, A, B, B, C, C.

Now is the time when the rules ab〈ab〉 → A, ac〈ac〉 → A, ba〈ab〉 → B,
bc〈bc〉 → B, cb〈ac〉 → C, cb〈bc〉 → C can be applied. Their goal is to produce
objects A, B, or C (in our case A2, B) that will be used as inhibitors in the
rules and so will forbid, in one step, the execution of corresponding rules. This
finishes the execution of the algorithm, because the objects will be eliminated
in the correct order.
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Theorem 2. The time complexity for the strong sorting algorithm with P
systems with inhibitors is 2k, where k is the number of elements to be sorted.

4.4 Weak Priorities Feature

Another biologically inspired model is represented by P systems with weak
priorities. In nature, systems evolve according to rules that usually are in
some order relation. Moreover, systems evolve in time according to sequences
of rules based on the priorities, in parallel, up to some moment when they
reach what we call an equilibrium state. Below, we present a system that uses
weak priorities for solving the sorting problem. One can notice that with very
few modifications the system will compute and solve the ranking problem.

Algorithm 4. Let v =
∏k

i=1i. (To define the priority relation among the
rules, we will need to refer to them. In order to be able to do that, we will
give labels to some of the rules while defining them, and then write down
the priorities between the rules associated with these labels.) Consider

Π = (O, ∅, [
1

]
1
, ε, (R1, ρ), {1}, {0}) with input

∏k

j=1j
nj ,

where:

O = {i | 1 ≤ i ≤ k} ∪ {x
(j)
i | 1 ≤ i, j ≤ k},

R = {r(w) : w →
∏

|w|

j=1xj〈
∏k

j=1,j /∈alph(w)j〉 | w ∈ SSub(v)− {ε}}

∪ {
∏k

j=1〈
∏k

l=1ij〉 → 〈
∏k

j=1xj〉}

∪ {r(xl
∏k

j=1
xij) : xl〈

∏k

j=1xij
〉 → lout〈

∏k

j=1xij
〉 |
∏k

j=1ij ∈ Perm(v),

ρ = {r(w1) > r(w2) | |w1| > |w2|, w1, w2 ∈ SSub(v)− {ε}}

∪ {r(xip

∏k

j=1xij
) > r(xiq

∏k

j=1xij
) | 1 ≤ p < q ≤ k,

∏k

j=1ij ∈ Perm(v)}.

The example below shows how the system behaves when considering the
3-integer sorting problem:

Example 6. Initial data: an1bn2cn3

The following rules are used:

abc→ a′b′c′〈ε〉 >

{ab→ a′b′〈c〉, ac→ a′c′〈b〉, bc→ b′c′〈a〉} >

{a→ a′〈bc〉, b→ b′〈ac〉, c→ c′〈ab〉},

〈a〉〈ab〉 → 〈ABC〉, 〈a〉〈ac〉 → 〈ACB〉, 〈b〉〈bc〉 → 〈BCA〉,

〈b〉〈ab〉 → 〈BAC〉, 〈c〉〈ac〉 → 〈CAB〉, 〈c〉〈bc〉 → 〈CBA〉,

〈ABC〉a′ → 〈ABC〉aout > 〈ABC〉b′ → 〈ABC〉bout > 〈ABC〉c′ → 〈ABC〉cout,

〈ACB〉a′ → 〈ACB〉aout > 〈ACB〉c′ → 〈ACB〉cout > 〈ACB〉b′ → 〈ACB〉bout,

〈BAC〉b′ → 〈BAC〉bout > 〈BAC〉a′ → 〈BAC〉aout > 〈BAC〉c′ → 〈BAC〉cout,
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〈BCA〉b′ → 〈BCA〉bout > 〈BCA〉c′ → 〈BCA〉cout > 〈BCA〉a′ → 〈BCA〉aout,

〈CAB〉c′ → 〈CAB〉cout > 〈CAB〉a′ → 〈CAB〉aout > 〈CAB〉b′ → 〈CAB〉bout,

〈CBA〉c′ → 〈CBA〉cout > 〈CBA〉b′ → 〈CBA〉bout > 〈CBA〉a′ → 〈CBA〉aout.

Weak priorities means that in one step of computation the rules are applied
in a sequence according to the priority relation, as much as possible for a
specific rule and in the maximum parallel manner for those rules for which the
relation is not defined or rules that have the same priority (with competition
for objects if it is so the case). For instance, in our example, in the first step
of computation (considering as usual n1 ≥ n2 ≥ n3), the following rules are
executed: abc→ a′b′c′〈ε〉, then ab→ a′b′〈c〉, and finally a→ a′〈bc〉. After this
step, in the membrane we have the objects

a′n1 , b′n2 , c′n3, 〈c〉, 〈bc〉, 〈ε〉.

The elements 〈c〉 and 〈bc〉 will be used for controlling the sorting process.
Practically, in the second step of derivation, these elements will react and
will produce the object 〈CBA〉 which contains all the information needed
for eliminating objects in the right order. Therefore, in the last step of
the computation, according to the priority relation, one applies the rules:
〈CBA〉c′ → 〈CBA〉cout > 〈CBA〉b′ → 〈CBA〉bout > 〈CBA〉a′ → 〈CBA〉aout.

Theorem 3. The time complexity for the strong sorting algorithm with P
systems with weak priorities is 2 +

∑k

i=1 ni, i.e., 2 plus the sum of all the
elements to be sorted.

4.5 Strong Priorities and Finite-State Catalysts

We use now the notion of s-stable catalysts. Such a catalyst has s states
c1, . . . , cs and the rules that use this catalyst may switch between states. This
means that rules like cia→ cjv, with 1 ≤ i, j ≤ s, are allowed. Because in our
sorting problem we deal with a finite number of objects, the finitely stable
catalysts are useful in synchronizing different tasks of the process and “more
appropriate” for understanding the algorithm used.

On the other hand, strong priority means that in one step of computation
only the rules with the highest priority are applied in the maximally parallel
manner, regardless of whether rules with a lower priority can be used for the
remaining objects.

Algorithm 5. Let v =
∏k

i=1i. (As in the weak priority case, to define the
priority relation among the rules we will give labels to some of the rules while
defining them, and then write down the priorities between the rules associated
with these labels.) Consider the system

Π = (O,C, [
1

]
1
,
∏k

j=1y
(0)
j

∏k

j=1lj , (R1, ρ), {1}, {0}) with input
∏k

j=1j
nj ,
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where:

O = {i, xi | 1 ≤ i ≤ k} ∪ {y
(j)
i | 1 ≤ i ≤ k, 0 ≤ j ≤ k},

C = {y
(j)
i | 1 ≤ i ≤ k, 0 ≤ j ≤ k},

R = {r(y
(0)
i ) : y

(0)
i i→ y

(0)
i xi | 1 ≤ i ≤ k}

∪ {r(y
(0)
i ) : y

(0)
i i→ y

(j)
i | 1 ≤ i, j ≤ k}

∪ {r(y
(j)
i xj) : y

(j)
i xj → y

(j)
i j

out
| 1 ≤ i, j ≤ k},

ρ = {r(y
(j)
i ) > r(y

(l))
i | 0 ≤ j < l ≤ k}

∪ {r(y
(p)
i xj) > r(y

(q)
j xj) | 1 ≤ i, j ≤ k, 1 ≤ p < q ≤ k}.

We present an example that illustrates the use of this system on a 3-integer
sorting problem. One can notice that the use of the strong priority controls
more strictly the computation process and, as a result, the degree of sensitivity
is smaller than in the model where we use weak priorities.

Example 7. Initial data: an1bn2cn3ABCl1l2l3.
The rules we use are:

Aa→ Aa′ > Al1 → A1 > Al2 → A2 > Al3 → A3,
Bb→ Bb′ > Bl1 → B1 > Bl2 → B2 > Bl3 → B3,
Cc→ Cc′ > Cl1 → C1 > Cl2 → C2 > Cl3 → C3,

{A1a
′ → A1aout , B1b

′ → B1bout , C1c
′ → C1cout} >

{A2a
′ → A2aout , B2b

′ → B2bout , C2c
′ → C2cout} >

{A3a
′ → A3aout , B3b

′ → B3bout , C3c
′ → C3cout}.

As in the previous cases we assume that n1 ≥ n2 ≥ n3. The system starts
by executing the catalytic rules Aa→ Aa′, Bb→ Bb′, Cc→ Cc′ only once in
each step of the computation, during the first n3 steps. When these steps are
completed, all the objects c are transformed in c′. This means that for the next
n2−n3 steps the rules Aa→ Aa′, Bb→ Bb′, and Cl1 → C1 will be executed.
Practically, in the case when n3 6= n2, these rules will produce at least one
object C1 which will be used by the rule C1c

′ → C1cout for eliminating the
objects with the smallest initial multiplicity.

If n3 = n2, then, instead of rule Bb → Bb′, the rule Bl1 → B1 will be
executed which will further permit the execution of the rule B1b

′ → B1bout.
In this way, in the case of objects with the same multiplicities, the output will
be with mixed objects.

Coming back to the case when multiplicities of objects are distinct, one
can notice that with the system being symmetrical, the order among the
multiplicities of the objects makes no difference. In our case, the system will
evolve in the following way: while objects c are sent out (in our example by
the rule C1c

′ → C1cout), the rules Aa → Aa′ and Bb → Bb′ are executed
in the next n2 − n3 steps because the objects a and b are still present in the
membrane. When all the objects b are transformed into b′ one can notice that,
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since the object l1 was “consumed” by the rule Cl1 → C1, the applicable rule
of the highest priority for the object B is Bl2 → B2. But this will trigger the
expelling of objects b in the environment only after all the objects c are sent
out (this is due to the priority relation among the sets of rules).

Finally, in a similar way, n1 copies of object a will be eliminated and this
will complete the goal of this P system. As a remark we can observe that
in the first part of the algorithm the priority rules act in the same way as
if they were weak. Still, the strong priorities are needed in the last part of
computation to control the output process.

Theorem 4. The time complexity for the strong sorting algorithm with P sys-
tems with strong priorities and s-stable (s = k+1) catalysts is max1≤i≤k(nk)+
∑k

i=1 nk, i.e., the sum of the elements to be sorted plus their maximum.

4.6 Dissolution Model

We now consider a sorting algorithm implemented by a P system with mem-
brane dissolution. If some rule x→ yδ, is executed, then the objects of x are
consumed, the objects of y are produced, and the corresponding membrane
(the exterior one of the current region) is dissolved. In other words, the con-
tents of the parent region is enriched by the contents of the current region
(to which that rule belonged), the current region disappears, and so do its
rules. All child membranes of the current region become child membranes of
its parent. The skin membrane is never dissolved.

Algorithm 6. Let v =
∏k

i=1i. Consider

Π = (O, ∅, [1 . . . [2k+1 ]2k+1 . . . ]1, w1, . . . , w2k+1, R1, . . . , R2k+1, {k + 1}, {0})

with input
∏k

j=1j
nj , where:

O = {i,Xi, X
′

i, Yi | 1 ≤ i ≤ k} ∪ {z
(j)
i | 1 ≤ i ≤ k, 0 ≤ i ≤ 2k(k − 1)}

∪ {〈w〉 | w ∈ SSub(v)− {v}}, w1 = g, wk+1 = z′,

wi = ε, for all i /∈ {1, k + 1},

R1 = {xj → j
out
| 1 ≤ j ≤ k}

∪ {g
∏k−1

j=1 〈
∏k

l=1ij〉 →
∏k

j=1y
(2k(j−1))
i |

∏k

j=1ij ∈ Perm(v)}

∪ {zj
i → z

(j−1)
i | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k(k − 1)},

Rm = R′

m + R′′

m, 2 ≤ m ≤ k + 1, R′′

m = ∅, 2 ≤ m ≤ k,

R′

m+1 = {
∏m

j=1Xij
→
∏m

j=1〈
∏k

j=1,j /∈alph(w)j〉 |

w =
∏m

j=1ij ∈ SSub(v)− {ε}}

∪ {z → zδ}, 2 ≤ m ≤ k + 1,

R′′

k+1 = {j → X ′

jin
yi} ∪ {z

′ → z},
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R′′

k+1+m = {X ′

m → Xm, z(0)
m → δ}

∪ {X ′

j → Xjin
, z

(0)
j → z

(0)
j in

, Xj → Xjout
| j > m},

for all 2 ≤ m ≤ k + 1.

Example 8. Initial configuration: [
1
g[

2
[
3
[
4
an1bn2cn3z′[

5
[
6
[
7

]
7
]
6
]
5
]
4
]
3
]
2
]
1
.

Rules:

R1 = {A→ aout, B → bout, C → cout,

g〈a〉〈ab〉 → a0b6c12, g〈a〉〈ac〉 → a0c6b12, g〈b〉〈bc〉 → b0c6a12,

g〈b〉〈ab〉 → b0a6c12, g〈c〉〈ac〉 → c0a6b12, g〈c〉〈bc〉 → c0b6a12,

ai → ai−1, bi → bi−1, ci → ci−1, a0 → a0in,

b0 → b0in, c0 → c0in},

R2 = {a′ → 〈bc〉, b′ → 〈ac〉, c′ → 〈ab〉, z → zδ},

R3 = {a′b′ → 〈c〉, a′c′ → 〈b〉, b′c′ → 〈a〉, z → zδ},

R4 = {a→ A′

ina′, b→ B′

inb′, c→ C ′

inc′, z′ → z, a′b′c′ → 〈ε〉, z → zδ},

R5 = {A′ → A, B′ → B′

in, C ′ → C ′

in,

a0 → δ, b0 → b0in, c0 → c0in, B → Bout, C → Cout},

R6 = {B′ → B, C ′ → C ′

in, b0 → δ, c0 → c0in, C → Cout},

R7 = {C ′ → C, c0 → δ}.

As explained below, the dissolution is used in the first part of the compu-
tation to solve the ranking subproblem, and in the second part of the compu-
tation to release the output.

In this example, z′ changes to z and the rules a→ A′

ina′, b→ B′

inb′, and
c→ C ′

inc′ of membrane 4 are first executed. This process will send the objects
A′, B′, and C ′ to the inner membrane (number 5). In one step, objects A′

are changed to objects A. In two steps, objects B ′ will travel from region 5
to region 6 and change to Bs. In three steps, objects C ′ will come to region 7
and change to Cs.

In the second step of computation, assuming as before that n1 ≥ n2 ≥ n3,
we will remain in membrane 4 with a′n1−n3b′n2−n3〈ε〉n3 , the other copies of
a, b, and c being deleted by the rule a′b′c′ → 〈ε〉. In the same step, z dissolves
membrane 4 and comes to region 3.

Then, in the third step, a′n1−n2〈c〉n2−n3〈ε〉n3 will be present in membrane
3 after the rule a′b′ → 〈c〉 is applied. Again, z dissolves membrane 3 and
exits to region 2. In the fourth step, 〈bc〉n1−n2〈c〉n2−n3〈ε〉n3 will be obtained
in membrane 2, also being dissolved. In region 1, g〈c〉〈bc〉 evolves to c0b6a12;
thus c0 has no delay and will be used to output objects c, b6 will wait six
turns, and a12 will wait even longer, to output objects a in the last turn.

Output works in the following way: a symbol a0, b0, or c0 comes to the
region 2, 3, or 4, respectively, where it dissolves the corresponding membrane.
Symbols A, B, and C, being in a region with an index smaller than 2, 3, and
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4, respectively, travel to the skin region, where they lead to aout, bout, cout,
respectively. Thus, the initial multiplicities are preserved, and the order of out-
put corresponds to the order of increasing multiplicities of the corresponding
objects.

Theorem 5. The time complexity for the weak sorting algorithm with P sys-
tems with object rewriting rules is k + 2 + 2k(k + 1) + 2 = 2k2 + 3k + 4, where
k is the number of elements to be sorted. However, the number of different
objects used is exponential with respect to k.

4.7 Ranksort

This is a strong sorting algorithm based on a ranking algorithm discussed in
the ranking section.

We will design a P system that will be responsible for the elimination
of symbols in the right order. Let us start with a 3-integer sorting example.
First, let us denote by Rank the module presented above. In order that the
elimination of a certain object not interfere with the elimination of another
object, we have to distribute each catalyst which represents a signal in dif-
ferent, consecutive membranes in such a way that the first signaling catalyst
arrives at the outermost membrane, the second signaling catalyst at the sec-
ond outermost membrane, and so on. This can be achieved by a construct such
as the following one (let us consider for simplicity the case of three signaling
catalysts that leave the rank module; moreover, for the sake of simplicity we
will show only the rules for the signal catalysts A; all the other rules can be
constructed in a very similar way). Figure 3 illustrates the procedure.

4 5
6

7

Rank

t2

At → Aout

Bt → Bout

Ct → Cout

M → t

t

At → Aout

Bt → Bout

Ct → Cout

M → Mint

an1 , bn2 , cn3

Aa → AoutaoutX
Kaa → Kaouttouta

X → X ′

X → X ′′

KaX ′′ → KaoutMint′out

EX ′′ → Eout

. . . . . . . . .

Ka, Kb, Kc, E

Kaa → Kainaout

Et → Eint′

At′ → Ain

. . . . . . . . .

#
"
Ã
!

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
Fig. 3. The P system solving the 3-integer strong sorting problem.
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Recall that in the Rank example n1 < n2 < n3 and so the signal catalysts
were eliminated in the order A, B, and finally C. This means that the catalyst
A will leave the Rank module first and will arrive in region 4. There, by the
rule At→ Aout, it will consume an object t and will go to region 5. From there,
by using a rule of the same type as before, it will finally arrive in membrane
6. One can see that if another signal catalyst (say B) leaves the Rank module,
it will arrive in region 5 and will not go further because all the objects t have
been already consumed. In this way, signal catalysts are separated in different
membranes according to the multiplicities they represent.

Now, we have the catalyst A in region 6 and also the multiset an1 , bn2 , cn3

(an1 , bn2 , cn3 can be transported here from the input membrane using only
context-free rules). As we said before, for the sake of simplicity we will consider
only the rules involving object a (the other rules are very similar, obtained,
for instance, by replacing A with B, a with b, and Ka with Kb in membranes
6 and 7).

In region 6 we want to eliminate objects corresponding to the signal that we
receive. Once we finish this task we also would like for the next signal catalyst
(which stays in a queue) to enter in region 6 and start the elimination process
again. Also, all other signal catalysts must “advance” up one region.

Since in our case the catalyst A enters in region 6, the rule that can be
applied is Aa→ AoutaoutX, which will decrease by one the number of objects
a. As an effect, an object X will be produced and both the catalyst A and the
corresponding object a will arrive into region 7. There, by the rule Kaa →
Kainaout the object a will be sent to the environment, while the catalyst Ka

(a “checker” – this catalyst will check if there are still objects a present in
region 6) will arrive into region 6; if there are still objects a present, then the
catalyst Ka will go to its initial position (region 7). Also, the catalyst A will
come back to region 6 and the process will start again. If the catalyst Ka does
not find any object a in membrane 6, an object M (“message”) will be sent
to the inner membranes. This object will be responsible for the “advancing”
in the “queue” of the signaling catalysts. The catalyst E present initially in
region 7 is responsible for “cleaning” operations of undesired symbols, while
the objects X,X ′, and X ′′ are used for synchronizing different tasks.

For a better understanding we present configurations in Tables 1 and 2.
We use the question mark (?) to denote that the indicated objects might be
present in the corresponding region.

For the k-integer sorting problem we will have a number of membranes
proportional to k. The mechanism used in the example for advancing in the
queue of signal catalysts will be preserved. Practically, we will have a system
with 3 (ranking problem) + k (the queue device) +1 membranes, and 2k + 2
catalysts.

The time complexity for the strong sorting algorithm with P systems with
mobile catalysts is linear with respect to the maximum number of elements
to be sorted. It also depends on the number of components to be sorted and
on the sum of the elements.
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Table 1. The case when n1 ≥ 2:

time region 5 region 6 region 7 environment

1 B? A, an1 , bn2 , cn3 Ka, Kb, Kc

Aa → AoutaoutX

2 B? an1−1, bn2 , cn3X Ka, Kb, Kc, E, A, a

X → X ′ Kaa → Kainaout

3 B? Ka, an1−1, bn2 , cn3 , X ′ Kb, Kc, E, A a

Kaa → Kaoutatout

X ′ → X ′′

4 B? an1−1, bn2 , cn3 , X ′′ Ka, Kb, Kc, E, A, t

Et → eint′

5 B? an1−1, bn2 , cn3 , X ′′, E Ka, Kb, Kc, A, t′

EX ′′ → Eout At′ → Ain

6=1’ B? A, an1−1, bn2 , cn3 Ka, Kb, Kc, E

. . . . . .

Table 2. The case when only one object a remains in region 6:

time region 5 region 6 region 7 environment

1 B? A, a, bn2 , cn3 Ka, Kb, Kc

Aa → AoutaoutX

2 B? bn2 , cn3X Ka, Kb, Kc, E, A, a

X → X ′ Kaa → Kainaout

3 B? Ka, bn2 , cn3 , X ′ Kb, Kc, E, A a

X ′ → X ′′

4 B? Ka, bn2 , cn3 , X ′′ Kb, Kc, E, A

KaX ′′ → KaoutMint′out

5 B?, M bn2 , cn3 Ka, Kb, Kc, E, A, t′

M → Mint At′ → Ain

6 B?, t A, bn2 , cn3 Ka, Kb, Kc, E

Bt → Bout

7 C? A, B?, bn2 , cn3 Ka, Kb, Kc, E

Bb → BoutboutX ?

8 . . . . . . . . . . . .

. . . . . . . . . . . .

The result is a consequence of the facts presented in the previous sections.
One can see that the ranking solution of the problem is given in linear time; the
transporting of catalysts to their correct positions depends on the number of
membranes (and so depends on the number of components). The elimination
process depends linearly on the sum of elements.
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5 Weak Sorting

Weak sorting is an algorithm which processes a multiset M and gives as a
result a word w =

∏k

j=1j
M(aj) such that

∏k

j=1aj is the ranking string of M .
A weaker definition could be given: the multiset M ′ corresponding to w can
be considered as the result (M ′(j) = M(aj), that is, the objects’ multiplicities
are ordered) because the order of numbers is represented by the order of the
corresponding objects in the alphabet. In the case of equality of some numbers
there is no need to make a decision whether “=” is “≤” or “≥” since the result
is the same. A typical strategy for weak sorting would be a sorting network,
i.e., a parallel or sequential usage of compare-swap-if-needed operator

(n, n′)→ (min(n, n′),max(n, n′)).

Weak sorting is typically easier than strong sorting.

5.1 Bead Sort

One of the sorting algorithms is Bead Sort. This subsection is devoted to the
construction from [3] of a P system implementing this algorithm. It actually
uses a tissue-like P system5 (see [9]) with k × m membranes, where m =
max{n1, . . . , nk} (the number of “rods”). The positive integers from the set
to be sorted are represented by a set of “beads”; they slide along the “rods”
to their appropriate places.

For a graphical representation of how bead sort works, Figure 4 shows the
initial and the final configuration of such a system when it sorts a particular
set, namely {3, 2, 4, 2}. Numbers from the set to be sorted are represented
horizontally (each level of the rods contains a number).

3 www4 wwww ⇒∗

4 wwww3 www
2 ww4 wwww2 ww3 www

⇒∗

4 wwww3 www2 ww2 ww

Fig. 4. Sorting the sets {4, 3} and {3, 2, 4, 2} using beads that slide on rods.

When we encode this simple idea within the P systems framework we will
use a tissue-like P system to represent the rods (membranes that can commu-
nicate); also, beads will be represented by objects x placed inside membranes

5
In such a system an antiport rule of the form (i, x|y, j) means the simultaneous

exchange of objects of multiset x from cell i with objects of multiset y from cell

j. Similarly, a symport rule (i, x, j) means moving the multiset x from cell i to

cell j.
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(the object # represents the absence of the bead). The membrane structure
is of degree m ·k+k where m ·k represents the m rods with k levels; the extra
k membranes are counters useful in solving the sorting problem. Objects x
represent the beads, objects # represent the absence of beads, objects p, q,
and r control the process, and objects c1, . . . , cm (present in the environment
in unbounded quantities) are used for the output.

There is an m · k bidimensional array of cells; let us denote them by ri,j ,
1 ≤ i ≤ k, 1 ≤ j ≤ m. The antiport rules

(ri+1,j , x|#, ri,j)

are used (they exchange objects x and # between membranes that are “above”
the others), 1 ≤ i < k, 1 ≤ j ≤ m, as the fall-down mechanism of the beads.

In order to read the output, symport rules of weight at most 2 and antiport
rules of weight at most m + 1 are used. Label 0 represents the environment.
Apart from the m ·k matrix, there are k membranes, associated with the rows.
Let us denote them by r1, · · · , rk. The object p, initially present in membrane
rk, “falls down” by the rules

(ri+1, p, ri), 1 ≤ i < k.

Notice that when p enters membrane r1 the “matrix” is guaranteed to be
sorted (no objects x are “above” objects #).

The answer is sent to the environment “row by row”: xnσ(1) , then xnσ(2) ,
and so on. For this, the following rules are used (other objects are also moved
from and to the environment):

(r1, p|qc1 . . . ck, 0),
(ri, q|rc1 . . . ck, 0), 1 < i ≤ k, i-even,
(ri, r|qc1 . . . ck, 0), 1 < i ≤ k, i-odd,

are used to recall objects cj from the environment,

(ri, cj , ri,j), 1 ≤ i ≤ k, 1 ≤ j ≤ m,
(ri,j , xcj , 0), 1 ≤ i ≤ k, 1 ≤ j ≤ m,

are used to move objects cj in the “matrix” and to eject the result, and

(ri, q, ri+1), 1 ≤ i < k, i-odd,
(ri, r, ri+1), 1 ≤ i < k, i-even,

are used to propagate the output process “up.”

Thus, the problem is solved in a purely communicative way (just by moving
objects). The time complexity of this solution is linear, but the features used
are quite powerful (antiport rules of unbounded weight), the descriptional
complexity of the solution is rather high (m · k + k membranes), the initial
data has to be a priori distributed among the m · k cells, and the result is
obtained in the environment.
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5.2 Communicative Sorting

Here we will present the static version of sorting with P systems where the
dimension of the input data set is given at the beginning of computation and
does not change. The construction we discuss is from [5].

As usual, we want to sort k natural integers X = {n1, . . . , nk}. In the P
system we construct we will represent the integer nj , 1 ≤ j ≤ k, as a string
anj (integer x is represented in a region as x occurrences of symbol a ∈ V ).

Having this representation, it is obvious that each region can contain at
most one number, because we have used only one object to represent the whole
set to be sorted. It follows that to sort k natural integers we will need at least
k membranes.

Let us consider a nested structure of membranes. This way, we have total
order among membranes; we can therefore use this order to have a codification
of the sorting result: for a given input sequence X = {n1, n2, . . . , nk}, the
solution to the sorting problem is the permutation of k elements, σ, i.e., we
have nσ(1) ≤ nσ(2) ≤ . . . ≤ nσ(k); then, at the end of the process of sorting,
the nested membrane structure should hold the integers in ascending order,
from the outermost to the innermost membrane.

Such a P system and its associated tree structure are depicted in Figure 5.
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anσ(k−1)

1

anσ(k)

Fig. 5. The result of sorting.

Customarily, in P systems framework a successful computation is defined
as a halting one. A weaker definition was given in [5] by introducing the
notion of a stable configuration (even if some rules are still applicable, their
application does not change the multisets present in the system compartments
or the membrane structure). Based on this notion, we can define a successful
computation as being one that ends in a stable configuration.



238 A. Alhazov, D. Sburlan

We can construct the following P system with symport/antiport rules
(with priorities among rules) which compares the multiplicities of objects a:

Π = ({a}, [
2

[
1

]
1

]
2
, w2, w1, R2, R1, {1, 2}, {1, 2}),

R2 = ∅,

R1 = {(a, out; a, in) > (a, in)},

with input

• w1 = ai in region 1,
• w2 = aj in region 2, where i, j are numbers to be compared.

We know that the system works in the maximally parallel way and that
objects are associated with rules according to the priorities among rules. This
means that exactly min(i, j) copies of a will be acted upon by the antiport rule
(a, out; a, in), and only afterward may the rule (a, in) start its execution. If
executed (i.e., j > i), rule (a, in) has the role of moving exactly j− i copies of
object a to the inner region. In case i > j, only rule (a, out; a, in) is executed.

One can remark that after just one computation step we have reached a
stable configuration. In addition, in this stable configuration membranes hold
objects a with multiplicities in ascending order, from the outermost to the
innermost membrane.'
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Fig. 6. The comparator if j > i. The P system on the right is the stable configuration

obtained after the application of the rules.

The developed comparator (a simple P system with two membranes) rep-
resents a module that can be further “integrated” in a larger construction.
We can construct in this way a P system that simulates the odd-even trans-
position networks. In order to do this we need to have a mechanism to control
the execution time of different comparators. This will be done by considering
promoted rules of type (a, out; a, in)|p > (a, in)|p (i.e., rules of the comparator
presented above are active in the presence of promoter p).

Let us consider the P system

Πo−e = (O,µ,w1, . . . , wk, R1, . . . , Rk, {1, . . . , k}, {1, . . . , k})
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with input ani in membrane i, 1 ≤ i ≤ k, where

O = {a, p},

µ = [
k

[
k−1 . . . [2 [1 ]1 ]2 . . . ]

k−1 ]
k
,

wi = p, 1 ≤ i < k, i odd,

wi = ε, 1 ≤ i < k, i even,

Ri = {(a, out; a, in)|p > (a, in)|p}, 1 ≤ i < k, i odd,

Ri = {(p, in) > (a, out; a, in)|p > (a, in)|p > (p, out)}, 1 ≤ i < k, i even,

Rn = ∅.

This is how the system works. At the beginning of the computation, each
region i contains objects ani . In addition, all the odd regions (with odd num-
bers as labels) contain the promoter p. The computation starts by executing
rules in the odd regions since all rules (no matter if they are acting in odd
or even regions) are promoted by object p. The first rule that the system
tries to execute is (p, in), but since there is no object p in the external region
the rule mentioned will not act. Therefore, because of the priority relation
among rules and of massive parallelism, rules (a, out; a, in)|p > (a, in)|p (the
rules of the comparator) are executed in the same computational step. As a
result, objects a with smaller multiplicity will be placed in the locally outer
region, while objects a with larger multiplicity will be placed in the locally
inner region. The configuration reached will be stable. The rule (p, out) will
be enabled and promoter p will enter the outer even region.

In this way the system has locally ordered the multiplicities of objects
a and, moreover, the initial configuration has been reestablished. Therefore,
the process can start again. Figure 7 illustrates the regions of a P system as
above, with six membranes (the regions are depicted as lines in a network;
the promoter p triggers the action of a comparator).

Based on this construction, we have the following result (see [5]):

Theorem 6. The P system Πo−e presented above will have in its membranes
the integers n1, . . . , nk, sorted in increasing order from the outermost to the
innermost membrane, after k transitions, in a configuration which is stable
over a.

5.3 Using Weak Priorities

The following algorithm implements a weak sorting using a (rewriting) P
system with symbol objects with weak priorities; at most two objects are
present on the left hand side of any rule. The idea behind this algorithm is
parallel simulation of an odd-even sorting network ; see also [5].

Algorithm 7. Let v =
∏k

i=1i. Consider the following P system

Π = (O, [1 ]1, ε, (R, ρ), {1}, {0}) with input
∏k

j=1j
nj ,
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Fig. 7. An odd-even P system for sorting: promoters p travel and activate compara-

tors between regions.

with weak priority (again defined with the help of labels), where:

O = {i | 1 ≤ i ≤ k} ∪ {y
(j)
i | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k},

R = {j → y
(0)
j | 1 ≤ j ≤ k}

∪ {r(j, l, 0) : y
(l)
j y

(l)
j+1 → y

(l+1)
j y

(l+1)
j+1 ,

r(j, l, 1) : y
(l)
j → y

(l+1)
j+1 ),

r(j, l, 2) : y
(l)
j+1 → y

(l+1)
j+1 | 1 ≤ j, l ≤ k; j ≡ l(mod 2)}

∪ {y
(l)
1 → y

(l+1)
1 | l ≡ 0(mod 2)}

∪ {y
(l)
k → y

(l+1)
k | l ≡ k(mod 2)}

∪ {y
(k−1+j)
j → j

out
| 1 ≤ j ≤ k} ∪ {yl

j → yl+1
j | k ≤ l ≤ k + j − 2},

ρ = {r(j, l, 0) > r(j, l, 1), r(j, l, 0) > r(j, l, 2) |

1 ≤ j, l ≤ k, j ≡ l(mod 2)}.

Example 9. In the case of an even number k of components, k−1 comparisons
suffice rather than k.
Initial data: an1bn2cn3dn4 .
Rules:
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a→ a1, b→ b1, c→ c1, d→ d1,
aibi → ai+1bi+1 > {ai → bi+1, bi → bi+1}, i ∈ {1, 3},
cidi → ci+1di+1 > {ci → di+1, di → di+1}, i ∈ {1, 3},
bici → bi+1ci+1 > {bi → ci+1, ci → ci+1}, i ∈ {2},

ai → ai+1, di → di+1, i ∈ {2},
a4 → aout, b5 → bout, c6 → cout, d7 → dout,
b4 → b5, c4 → c5, c5 → c6,
d4 → d5, d5 → d6, d6 → d7.

Here, the rules of type AB → A′B′ > {A → B′, B → B′} perform the
compare-swap-if-needed operator:

AnBn′

⇒ A′min(n,n′)B′max(n,n′).

This happens because the higher priority rule AB → A′B′ is applied min(n, n′)
times, and one of the lower-priority rules is applied |n1 − n2| times, due to
the maximally parallel nature of the application. This operator is computed
in one step, and at least |(k − 2)/2| operators are computed in parallel. The
needed number of steps is k−1+(k mod 2) where mod denotes the remainder.
Finally, the objects exit the system in alphabetical order.

Theorem 7. The time complexity for the weak sorting algorithm with P sys-
tems with rewriting is 2k + 1, where k is the number of elements to be sorted.

5.4 Evolution-Communication Systems

The idea of the next algorithm is very similar to that from the previous section
(a parallel simulation of an odd-even sorting network). However, the type of
P system we use is quite different. We now have no target indications in the
evolution rules (the result stays in the same regions), but we use communica-
tion rules for moving objects (they do not change objects, just move them).
These two types of rules are executed in a maximally parallel manner. In
the following construction, we will only have non-cooperative evolution rules,
symport rules of weight 1, and antiport rules of weight 1.

The weak priority can exist between the evolution rules of the same region,
between the communication rules of the same membrane, and between the
rules of the two classes, where the membrane is the external boundary of the
corresponding region.

Example 10. Let B4 = b4, D4 = d4, that is b4 and d4 are used as synonyms of
B4 and D4. The initial configuration is [1[2a

n1bn2cn3dn4 ]2]1.
The rules are defined in the tables below.
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Region 1 Region 2 i ∈ Step
a→ a0, b→ b′, c→ c0, d→ d′ 1
(a0, out), b′ → b0, (c0, out), d′ → d0 2

a0 → a1, c0 → c1 b0 → b1, d0 → d1 3
(bi, out; ai, in) > {(ai, in), bi → ai} {1, 3} 4,12
(di, out; ci, in) > {(ci, in), di → ci} {1, 3}

bi → Ai+1, di → Ci+1 ai → Bi+1, ci → Di+1 {1, 3} 5,13
(Ai, in), (Bi, out), (Ci, in), (Di, out) {2} 6

Bi → bi, Di → di Ai → ai, Ci → ci {2} 7
di → d′i (ci, out; bi, in) > {(bi, in), ci → bi} {2} 8

ai → a′

i {2}
a′

i → Ai+1, bi → Ci+1 ci → Bi+1, d′i → Di+1 {2} 9
(Ai, out), (Bi, in), (Ci, out), (Di, in) {1} 10

Ai → ai, Ci → ci+1 Bi → bi, Di → di {1} 11
A4 → a4, C4 → c4 (B4, out), (D4, out) 14

Region 1 Step
a4 → a, b4 → b5, c4 → c5, d4 → d5 15
(a, out), b5 → b, c5 → c6, d5 → d6 16
(b, out), c6 → c, d6 → d7 17
(c, out), d7 → d 18
(d, out) 19

Here, the rules written in the same row of the table are executed in the
same step, and the table also indicates the actual step in which these rules
can be applied. The computation proceeds as follows:

[1[2a
n1bn2cn3dn4 ]2]1 ⇒ [1[2a

n1

0 b′n2cn3

0 d′n4 ]2]1 ⇒

[
1
an1

0 cn3

0 [
2
bn2

0 dn4

0 ]
2
]
1
⇒ [

1
an1

1 cn3

1 [
2
bn2

1 dn4

1 ]
2
]
1
⇒

[
1
b
n′

1

1 d
n′

3

1 [
2
a

n′

2

1 c
n′

4

1 ]
2
]
1
⇒ [

1
A

n′

1

2 C
n′

3

2 [
2
B

n′

2

2 D
n′

4

2 ]
2
]
1
⇒

[1B
n′

2

2 D
n′

4

2 [2A
n′

1

2 C
n′

3

2 ]2]1 ⇒ [1b
n′

2

2 d
n′

4

2 [2a
n′

1

2 c
n′

3

2 ]2]1 ⇒

[1c
n′′

2

2 d′2
n′′

4 [2a
′

2
n′′

1 b
n′′

3

2 ]2]1 ⇒ [1B
n′′

2

3 D
n′′

4

3 [2A
n′′

1

3 C
n′′

3

3 ]2]1 ⇒

[1A
n′′

1

3 C
n′′

3

3 [2B
n′′

2

3 D
n′′

4

3 ]2]1 ⇒ [1a
n′′

1

3 c
n′′

3

3 [2b
n′′

2

3 d
n′′

4

3 ]2]1 ⇒

[1b
n′′′

1

3 d
n′′′

3

3 [2a
n′′′

2

3 c
n′′′

4

3 ]2]1 ⇒ [1A
n′′′

1

4 C
n′′′

3

4 [2B
n′′′

2

4 D
n′′′

4

4 ]2]1 ⇒

[1a
n′′′

1

4 B
n′′′

2

4 c
n′′′

3

4 D
n′′′

4

4 [2]2]1 ⇒ [1b
n′′′

2

5 c
n′′′

3

5 d
n′′′

4

5 [2]2]1a
n′′′

1 ⇒

[1c
n′′′

3

6 d
n′′′

4

6 [2]2]1a
n′′′

1

4 bn′′′

2 ⇒ [1d
n′′′

4

7 [2]2]1a
n′′′

1 bn′′′

2 cn′′′

3 ⇒

[1[2]2]1a
n′′′

1 bn′′′

2 cn′′′

3 dn′′′

4 .
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The objects are divided into two classes: {j ∈ V | j ≡ 0(mod 2)} and
{j ∈ V | j ≡ 1(mod 2)}. These classes are stored in different membranes, so
the compare-swap-if-needed operator sorting (A,B) to (A′, B′) is made of an
antiport rule (A, out;B, in), having weak priority over a symport rule (A, out)
and over a rewriting rule B → A; after using this rule, A is renamed to B, B
is renamed to A, both types of objects cross the membrane, and we then use
B → B′, A→ A′. A comparison operator is executed in four steps.

In this example, the following sorting network (ni)1≤i≤4 ⇒ (n′′′

i )1≤i≤4 was
simulated,

n1

n2

n3

n4

n′′′

1

n′′′

2

n′′′

3

n′′′

4

¡¡@@

¡¡@@
¡¡@@

¡¡@@

¡¡@@ (n1, n2)→ (n′

1, n
′

2), (n3, n4)→ (n′

3, n
′

4),
n′′

1 = n′

1, (n′

2, n
′

3)→ (n′′

2 , n′′

3), n′′

4 = n′

4,
(n′′

1 , n′′

2)→ (n′′′

1 , n′′′

2 ), (n′′

3 , n′′

4)→ (n′′′

3 , n′′′

4 ),

represented by the picture on the left.

The general case of sorting k numbers is addressed in a similar way. The
depth of the sorting network should be k − ((k + 1)mod 2).

5.5 Strings

Let us define a string weak sorting in a weak sense: the order of the symbols
in the resulting string is not important, and the numbers are represented by
the number of occurrences of corresponding objects in the string.

Consider the following string rewriting P system with priorities, imple-
menting the compare-swap-if-needed operator:

Algorithm 8. Π = (O, ∅, [1 [2 [3 ]3 ]2 ]1, ∅, ∅, ∅, R1, R2, R3, {3}, {0}) with

input anbn′

, where:

O = {a, b, a′, b′, a},

R1 = {a→ b′, b→ b′} > {b′ → b′out},

R2 = {a→ a′

out} > {b→ b′in} > {b′ → b′out},

R3 = {a→ a′

out} > {a′ → aout}.

Here, for each comparison, the string goes back and forth between two
regions, and at every step one symbol is marked; when the minimum of the
two numbers is reached, the string exits to the third region and the unmarked
symbols are rewritten by marked symbols, corresponding to the object which
has a higher alphabetic position. The result of the computation will be w ∈
Perm(a′min(n,n′)b′max(n,n′)).

By nesting these constructions and varying the rules according to the ob-
jects to compare, a sorting network can be easily implemented. An alternative
approach is to use the outer membrane to rewrite all the objects, return the
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string to region 3, and proceed with the next comparison using a different
subset of rules, all subsets being like those in the construction above, with the
necessary renames and moves. This would lead to a construction with only
three membranes, but a lot of objects and rules.

5.6 Mobile Catalysts and I/O Communication

Catalysts are the “weakest” components that, joined with non-cooperative
rules, prove to be enough for reaching universality in the case of P systems
with symbol objects. The mobility of catalysts proves to be important because
it allows the construction of a deterministic process in a very intuitive way.
As we commented at the beginning of the chapter, for a practical algorithm
we are interested in deterministic processes. The main idea used is that if a
catalyst changes the region during the computation, when it comes back to
the original region it will find a different context, and so it will react in a
different way. In order to implement this we will need at least two mobile
catalysts. First, let us see how to build a comparator – a component that for
classical algorithm theory is very important.

c, e

c0 → cin0in

e1 → ein1in

A → 1
′

outfout

B → 1
′

outfout

C → 1
′

out0
′

outfout

c0 → cin0inxin

e1 → ein1inyin

A → Aout

B → Bout

cd → cout

ed → eout

g → g′

g′ → g′′

g′′ → g′′′

cg′′′ → cout

eg′′′ → eout

C → C ′

C′ → C′′

C′′ → Cout

c1 → cαinβgout

e0 → eαinβgoutCout

cβ → cout

eβ → eout

x → x′

x′ → x′′

y → y′

y′ → y′′

ky′′ → kin

kx′′ → kin

k0 → kin

k1 → kin

cx′′ → cαinβAoutdout

ey′′ → eαinβBoutdout

'

&

$

%

k2

kα → kout

'

&

$

%

'

&

$

%

'

&

$

%4

3

2

1

Fig. 8. The comparator. The system computes the maximum and the minimum

between multiplicities of the objects 0 and 1 that enter membrane 4.

The module shown in Figure 8 compares the multiplicity of two objects
and returns an object having as multiplicity the maximum of the initial two
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multiplicities and an object having as multiplicity their minimum. The con-
struction will work and the tables given in Figures 9 and 10 explain both cases
that can occur:

• the objects have different multiplicities,
• the objects have the same multiplicities.

Another important aspect that must be handled is that we want the process
to give the answer at the same time for both cases that could appear. This is
why we have to introduce some delays (by applying some renaming rules) in
order to control the computation.

Time Region 4 Region 3 Region 2 Region 1

1 c, e, 0, 1 – – k2

c0 → cin0in

e1 → ein1in

2 0?, 1? 0, 1, c, e – k2

c0 → cin0inxin

e1 → ein1inyin

3 0?, 1? – 0, 1, c, e, x, y k2

c1 → cαinβgout

e0 → eαinβgoutCout

4 0?, 1? g2, C c, e, x, y, β2 k2, α2

C → C ′ x → x′ kα → kout

g → g′ y → y′

cβ → cout

eβ → eout

5 0?, 1? g′2, C′, c, e x′, y′, k2
–

C′ → C′′ x′ → x′′

g′ → g′′ y′ → y′′

6 0?, 1? g′′2, C′′, c, e x′′, y′′, k2
–

C′′ → Cout kx′′ → kin

g′′ → g′′′ ky′′ → kin

7 0?, 1?, C g′′′2, c, e – k2

C → 0
′
1
′f

out
cg′′′ → cout

eg′′′ → eout

8(0
′
1
′f) c, e, 0?, 1? – – k2

Fig. 9. The case when objects 0 and 1 enter simultaneously region 4.

We proceed as follows. The idea is to detect when two objects simultane-
ously enter the comparator and when only one enters. Based on the answer
to this decision problem we can trigger a signal stating the largest number.
There are two distinct cases that can occur: in membrane 4, the symbols 0
and 1 enter simultaneously or there is only one symbol (0 or 1) that enters at
a time. Now, the rules c0→ cin0in and e0→ ein1in in membrane 4 are used
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only to carry the corresponding objects into the comparator. There, by the
same type of rules (c0 → cin0inxin and e0 → ein1inyin), the objects will be
passed from membrane 3 to membrane 4.

According to these cases, the system will react in different ways. Suppose
we have the first case, where 0 and 1 enter membrane 4; see Figure 9. Then,
as we said above, by using catalytic rules (we associate the catalyst c with 0
and the catalyst e with 1) the pairs of objects (c, 0) and (e, 1) go up to region
2. There, we switch the associations made before in order to check if 0 and 1
enter simultaneously. If this is so, the objects α and β will be produced and
two copies of g will be sent out into region 3. The objects α and β will be used
for triggering the “cleaning” process of unneeded symbols. For instance, α is
used only to take out the catalyst k from membrane 1, and this catalyst is
responsible (in the rules k0→ kin and k1→ kin) for deleting from membrane
2 the unused symbols 0 and 1. In the other case, β will be used in the process
of sending the catalysts c and/or e from membrane 2 to membrane 1.

Time Region 4 Region 3 Region 2 Region 1

1 c, e, 1 – – k2

e1 → ein1in

2 c, 1? e, 1 – k2

e1 → ein1inyin

3 c, 1? – e, 1, y k2

y → y′

4 c, 1? – e, 1, y′ k2

y′ → y′′

5 c, 1? – e, 1, y′′ k2

ey′′ → eαinβBoutdout

6 c, 1? B, d e, β, 1 k2α

B → Bout eβ → eout kα → kout

7 c, 1?, B d, e k, 1 k

B → 1
′

out ed → eout k1 → kin

8(1
′f) c, e, 1? – – k2

Fig. 10. The case when only object 1 enters region 4.

The second case can occur if only one symbol, 0 or 1, enters membrane
4; see Figure 10. In this case, the rules c0 → cin0in and e1 → ein1in cannot
be used simultaneously. Because of this, only one rule will be executed in
membrane 3 (c0 → cin0in or e1 → ein1in). Suppose that 1 enters region 2;
then the rule c1→ cαinβgout will not be applied because the correct catalyst
c is missing. So, for instance, the sequence of rules that will be applied in the
case of a unique symbol 1 being present is the following.

First the rules y → y′ and y′ → y′′ are used for delaying the process,
preventing the entrance of a new symbol 1 (if any) into region 2. Also, one
can see that if the catalyst e and the symbol p are at the same time in region
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2, then it means that only one symbol 1 entered the region, and so we can
notify this to the outer regions. In all cases, the object k is responsible for
“deleting” unused symbols that otherwise could cause a conflict between some
rules in the next cycle of computation.

Figures 9 and 10 show the timetables for the cases discussed, considering
in each case one significant cycle.

The case where only one symbol 0 enters region 4 can be realized in a
straightforward way, being similar to the previous case (where object 1 enters
membrane 4).

One can note that the delays used during the whole process were important
for two reasons: some of them were used for synchronization tasks, while
others were meant only to have the output in the same computation time
(not depending on the input). For instance, the sequence of rules C → C ′,
C ′ → C ′′, and C ′′ → Cout will delay the output in the case where 0 and 1
enter simultaneously.

Now, suppose that in membrane 1 we have objects 0i and 1j with i > j.
In this case, after 7 · (|i − j|) + 1 steps, region 4 will receive the first signal
symbol A, indicating the fact that i > j. In a similar way, if j > i or i = j,
at the same time as before, region 4 will receive the signal symbol B or C,
pointing to the corresponding cases.

What is interesting is that the same P system with few modifications can
serve different tasks, such as obtaining the minimum (maximum) between
the multiplicities of two objects, obtaining the difference of multiplicities,
obtaining the sum of multiplicities, and so on.

5.7 Using a Comparator

Now, once we have the comparator, in order to solve the sorting problem we
have only to construct the comparison network. In this way, we will be able
to simulate practically any classical comparison-exchange-based algorithm.

We can use the comparator to make all the comparisons present in the
sorting network, but only one comparison at a time due to the number of
catalysts present in the comparison module (one can extend the number of
catalysts for a more parallel approach, but then we will have synchronization
problems). The time complexity for this case will be proportional to the num-
ber of comparisons made in a sorting network. The number of membranes in
this model is fixed and does not depend on the number of components to be
sorted.

The order of how elements enter in the comparison module will be con-
trolled also by mobile catalysts, one associated with each comparison, as well
as a fixed number of auxiliary catalysts. The comparison module sends to the
outer region signals representing the fact that the work of the module is still
in progress. When a comparison is finished, no signal will be sent, and so the
system will proceed to the next comparison.
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6 Ranking

The ranking is an algorithm which processes a multiset M and gives as a result
a word w =

∏k

j=1aj ∈ Perm(V ) such that M(aj) ≤ M(aj+1). In the strong
sorting by P systems with promoters, another method was used to calculate
the ranking: rank(j) = card{i |M(i) < M(j)}, and w =

∏k

j=1aj ∈ Perm(V )
such that rank(aj) ≤ rank(aj+1). In fact, only {(j, rank(j)) | 1 ≤ j ≤ k} was
computed. In the case of equality of some numbers either a decision should
be made as to whether “=” is “≤” or “≥” (see the technique of unequalizer)
or the arbitrary order is produced. In the strong sorting algorithms presented
above, also the representation of ranking in some form was computed, so
ranking subroutines are hidden in them.

6.1 Employing Mobile Catalysts

If in the previous case the construction of the comparator was intended to
prove that the comparison of the multiplicities of two objects could be achieved
with only three catalysts, here we will show a generalization of the comparator.
Practically, with more catalysts (k+1 catalysts, where the first k are associated
with the objects whose multiplicities we want to sort, plus one which will be
used to “clean” unneeded symbols) we can reach our goal in an unexpectedly
good time with respect to the “weakness” of the ingredients.

Nevertheless, this will give the answer to the ranking problem only, and
one can remark that the passing from the ranking problem to the sorting
problem (using only catalytic rules) is not a trivial task. This is due to the fact
that the rules must be independent of the initial multiplicities of the objects
representing the initial vector (no rules of type ca → can1

out or a → an1

out are
used).

Algorithm 9. Let v =
∏k

i=1i. Consider

Π = (O,C, [
1

[
2

[
3

]
3

]
2

]
1
, sk,

∏k

j=1Xj ,K
k, R1, R2, R3, {1}, {0}),

with input
∏k

j=1j
nj ,

C = {Xi | 1 ≤ i ≤ k} ∪ {K},

O = C ∪ {i, yi | 1 ≤ i ≤ k} ∪ {s, f, t},

R1 = {j → j
in

, Xjyj → Xjjout
| 1 ≤ j ≤ k} ∪ {s→ f, f → sin},

R2 = {Xjj → Xjin
j

in
, Xjs→ Xjout

yjout
| 1 ≤ j ≤ k}

∪ {Ks→ Kinfout},

R3 = {Kj → Koutt, Xjt→ Xjout
| 1 ≤ j ≤ k}.

In Figure 11 are presented the significant steps of the computation made by
the Π when solving the k-integer ranking problem.
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Step Env Region 1 Region 2 Region 3

0 sk
Q

k

j=1
jnj
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k

j=1
Xj Kk

1 fk
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k
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Xj Kk

1 fk
Q

k

j=1
jnj

Q

k

j=1
Xj Kk

2 sk
Q

k

j=1
jnj−1 KkPikj=1Xj

Q

k

j=1
j

3 skKk
Q

k

j=1
jnj−1 tkPikj=1Xj

4 fk
Q

k

j=1
jnj−1

Q

k

j=1
Xj Kk

1
′ fk

Q

k−1

j=1
jnj

Q

k

j=1
Xj Kk

2
′ skXk

Q

k−1

j=1
jnj−1 KkPik−1

j=1Xj

Q

k−1

j=1
j

3
′ Xkyk sk−1Kk−1

Q

k−1

j=1
jnj−1 Ktk−1Pik−1

j=1Xj

4
′ k fk−1Xk

Q

k−1

j=1
jnj−1

Q

k−1

j=1
Xj Kk

Fig. 11. The computation for the k-integer ranking problem.

Example 11. Consider the case of ranking 3 numbers. For simplicity, let us
rename the variables as follows: 1 = a, X1 = A, y1 = a′, etc.
Initial data: [

1
an1bn2cn3s3[

2
ABC[

3
K3]

3
]
2
]
1

Rules of region 1: a→ ain, b→ bin, c→ cin, s→ f , f → sin,
Aa′ → Aaout, Bb′ → Bbout, Cc′ → Ccout;

Rules of region 2: Aa→ Ainain, Bb→ Binbin, Cc→ Cincin,
As→ Aouta

′

out, Bs→ Boutb
′

out, Cs→ Coutc
′

out, Ks→ Kinfout;
Rules of region 3: Ka→ Koutt, Kb→ Koutt, Kc→ Koutt,

At→ Aout, Bt→ Bout, Ct→ Cout.

In Figure 12 we present the computation for the case of three numbers.

Step Env Region 1 Region 2 Region 3

0 s3an1bn2cn3 ABC K3

1 f3 an1bn2cn3ABC K3

1 f3 an1bn2cn3ABC K3

2 s3an1−1bn2−1cn3−1 K3ABCabc

3 s3K3an1−1bn2−1cn3−1 tttABC

4 f3 an1−1bn2−1cn3−1ABC K3

1
′ f3 an1bn2ABC K3

2
′ s3Can1−1bn2−1 K3ABCabc

3
′ Cc′ ssKKan1−1bn2−1 KttAB

4
′ c ffC an1−1bn2−1AB K3

Fig. 12. The computation for the 3-integer ranking problem.

Now let us see what the idea is for this system. First we have the symbol
f (a checker) which goes back and forth from membrane 1 to membrane
2. It will react in different ways according to what it finds in membrane
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2. In this membrane, by applying the rules of type Xjj → Xjin
j

in
in a

step of computation, we “erase” one symbol from each component (where
by component we mean the multiset jnj , 1 ≤ j ≤ k). Up to the time when
one component is completely erased, the rules of type Ks → Kinfout will
be applied. The catalyst K is also executing a back and forth oscillation
between membranes 2 and 3, but with a different timing than f . This is done
because we would like that if there are still elements to delete, the rules of type
Xjj → Xjin

j
in

be executed before the rules of type Ks→ Kinfout. When one
component is “removed” from the initial multiset, the corresponding catalyst
will not leave membrane 2, and so the rule Xjs→ Xjout

yjout
can be applied.

This means that we can send a signal representing the fact that the object with
the smallest multiplicity was reached. At the same time, the corresponding
catalyst will enter membrane 1 and will not participate in any more tasks. The
process will continue until all components have been exhausted. In this way
we obtain a ranking algorithm which will have time complexity proportional
to the maximum multiplicity of the objects from the initial multiset.

Now, once we have the ranking problem solved, we can go further to solve
the sorting. First, one can remark that a signal is a catalyst or a common
object (the rule to send signals in membrane 1 is of type Xjs → Xjout

yjout
).

Of course, one can send out a finite set of objects but this will not affect
essentially the process. Another possibility is that before the process begins
we can make a copy of the initial multiset (for example, we replace the rule
j → j

in
with the rule j → j

in
j′ in membrane 1) for using later when we would

like to eliminate objects in the right order. A rule of type Xjyj → Xjy
′

j
n1 is

not good, because we would like to have a system that dissociates the input
from the implementation; hence we have to construct the output based on the
signals that we receive. Moreover, the elements cannot be eliminated all at
once because this implies a non-cooperative rule; however, having such kinds
of rules, we cannot control the process.

Therefore, the only solution is to again use catalysts. No matter how this
is done, it will be a difficult task because the signals representing the order
are not sent out in the “right” interval of time (the interval from which we
can easily deduce the multiplicity of a certain object). For instance, consider
the case where the multiplicities of the objects are n1 > n2 > n3 . . .; then,
the first signal will appear after a time proportional to n3, the second after a
time proportional to n2 − n3, and so on. As it can be seen, if in our example
we have n3 > (n2 − n3), then we will have “overlapping” tasks, meaning that
at a certain moment we will have more than one signal present in the same
membrane. To overcome this, one can use the same techniques as before to
allow only one catalytic rule to work, up to the time when all elements from
a specified component will be exhausted.



Static Sorting P Systems 251

7 Conclusion

We have studied the possibility of solving the sorting problem in the mem-
brane computing framework by considering the main variants of P systems.
An interesting result concerning this topic is that starting with objects that
do not have any order and are mixed together in what we formally call a mul-
tiset, we constructed the order by computing. We studied in this way many
membrane system models that behave in slightly different ways when they
address the same problem. The common feature shared by many algorithms
presented is that we sort by “carving” (consuming objects iteratively, one sym-
bol from each of the components at once) and signaling when a modification
occurs in the system (usually triggering a signal when a certain component
has been eliminated). Other ideas included applying the classical approaches
of sorting by using a comparator. This comparator was implemented using
only input/output operations and catalytic rules. The device presented can
be adapted to work in many algorithms that are comparison-based.

Sorting problems are among the most important problems in computer
science theory. Besides them, many other problems are waiting to be solved
in the framework of P systems. The reason is that we can obtain better results
in time complexity than by using classical algorithms because of the massive
parallelism of P systems. We believe that some techniques (the comparison
method in the case of movable catalysts and non-cooperative rules, the syn-
chronization methods used in the comparison-based algorithms) developed in
this chapter can be also used to construct systems that solve such kinds of
problems. The improvements of current algorithms (by reducing the number
of membranes when this is the case, reducing the number of catalysts, and so
on) are also open areas of research. Yet another interesting research topic is
designing dynamic sorting (universal for an arbitrary number of components)
P systems.
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195–205.



Chapter 9
Membrane-Based Devices Used in Computer
Graphics

Alexandros Georgiou, Marian Gheorghe, Francesco Bernardini

Department of Computer Science

The University of Sheffield

Regent Court, Portobello Street, Sheffield, S1 4DP, UK

Alex.Georgiou@hushmail.com, M.Gheorghe/F.Bernardini@dcs.shef.ac.uk

Summary. A model of plant growing based on some variants of P systems is con-

sidered. The model (very close to L systems-based approaches) represents a further

step toward a more modular way to specify biological systems. A specification lan-

guage and a tool supporting the model are also presented together with some simple

examples. A key operation introduced in this context is rule rewriting – there are

rules which rewrite the right hand sides of other rules. Because of the importance

of this operation for our approach, we also briefly investigate it from a theoretical

point of view in the Annex.

1 Introduction to Plant Modeling

A variety of computational models have been employed for the task of sim-
ulating the growth and development of living plants. These models can give
us a variety of information regarding the behavior of the modeled plants as
well as graphical representations of the simulation. The graphical models are
designed according to two driving principles: (i) they should be simple enough
to be designed by humans and computed by machines, and (ii) they must be
complex enough to mimic the relevant biological processes, a requirement for
producing realistic graphics.

Among the most commonly used models to graphically represent plants
are those based on grammars. L systems, which were introduced in 1968 by
Aristid Lindenmayer, have been successfully used as the rewriting mechanism
of this strategy [13], [7]. In short, a string of commands is rewritten repetitively
using a set of production rules. The commands will usually be targeted to
what is known as a turtle interpreter, a “cursor” able to move, rotate, and
draw in two or three dimensions [9]. First, the L systems production rules
are applied in parallel, iteratively, starting from an initial string called an
axiom, and the resulting string is then passed to the turtle interpreter, which
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generates the graphics. Other computational models have been applied to the
problem of plant modeling, some of which make use of a turtle interpreter, and
some not. None, however, have been shown to be as flexible and expressive
as L systems. On the other hand, there have been attempts to combine the L
systems approach with other similar computational models in order to achieve
simpler and more powerful models [23].

P systems are a much newer biologically inspired computational model,
introduced in 1998, by Gheorghe Păun [17]. The model is based on the con-
cept of membranes as they appear in living cells. In such a system the mem-
branes separate various compartments called regions. Since membranes can be
nested, regions form a hierarchical structure. Adjacent regions may communi-
cate symbols in some circumstances. In some variants of P systems the type of
computations performed inside the regions can be string rewriting. It follows
that by allowing these strings to be processed by the turtle interpreter, one
may use P systems to generate plant graphics. Care must be taken in defining
the model; thus, the suitability of string manipulating P systems for the same
task may be investigated. The novel features would be the concept of the
membrane, which might add to the success of other grammar-based systems
and the way symbols are passed around from one region to another.

1.1 L Systems and the Turtle Interpreter

As it is often the case in science, models that work best are the ones that have
a strong analogy to the real world systems they mimic.

Perhaps the L systems model, which originated from Aristid Lindenmayer
in 1968, is the one most widely studied for plant representation. This is a
string-rewriting model, which was inspired by the developmental processes
occurring in simple algae. A short and informal review of L systems follows.
The interested reader may refer to the book The Algorithmic Beauty of Plants
by Lindenmayer and Prusinkiewicz [13], which is an excellent introduction to
L systems and their applications.

String rewriting in L systems proceeds in parallel (unlike Chomsky gram-
mars, where rewriting is sequential); this creates an analogy with cellular
growth and division, which also proceeds in parallel in multicellular organ-
isms. An L system consists of an axiom string and a set of production rules.
The system changes its state in a sequence of discrete steps. At any step, any
symbol in the string that may be rewritten by a rule is rewritten (by exactly
one rule). Thus the following axiom ω and rules

ω : B

r1 : A→ BA

r2 : B → AB

describe a system that progressively produces these strings:
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B

AB

BAAB

ABBABAAB

BAABABBAABBABAAB

. . .

Just like in nature, where RNA links the one-dimensional genes with the
three-dimensional proteins, so in this model there must be something that will
eventually connect the two worlds; that is, convert the 1D string to a final
3D structure. This is typically accomplished with a turtle interpreter. Here a
“turtle” is a cursor that moves and rotates in space, drawing lines in its path.
The symbols in the L system string are interpreted as drawing commands
by the turtle, thus producing plant-like shapes. These commands instruct the
turtle to move forward, rotate, and draw lines, while many other commands
exists for fine-tuning the drawing process.

Many extensions of L systems have been suggested, and each increases the
power of the model in a different direction.

Parametric L systems are systems where symbols may have zero or more
associated arithmetical parameters. Thus, a symbol A with two parameters, 4
and 2, would be denoted as A(4, 2). Symbols that are also drawing commands
may have a special meaning associated with their parameters. For example,
F is a command that makes the turtle proceed by one unit and draw a line
in its path; but if the same command has a parameter, the turtle walks and
draws a line of length equal to the parameter.

In this way, the parameters facilitate the specification of non-integral
lengths, lines of different widths and colours, etc. The turtle interpreter must
be programmed to recognize these. Parameters may also have arbitrary (user-
defined) meanings in a model, such as counters, signals (hormones and nu-
trients), etc. Rules can be conditional, so that they rewrite a symbol only if
a certain expression involving its parameters is true. Furthermore rules may
perform arithmetical operations. For example, the rule

A(2, x) : x > 3→ BC(x− 1)

would rewrite any symbol A with its first parameter equal to 2 and its second
parameter greater than 3, with the symbols B and C, as specified on the
right hand side. The parameter of C is an arithmetical expression involving a
parameter from A.

Several other extensions have been used with L systems, the most notable
of which are perhaps the context-sensitive rules [13] and the query modules
[15]. For the purposes of this approach we may concentrate on L systems with
parameters and conditional rules, i.e., systems with rules as in the example
given above. Other methods of generating plant graphics that follow the same
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general pattern are conceivable. The turtle interpreter could be replaced by
some other graphical interpreter, like a vector interpreter [1]. Alternatively,
the turtle interpreter could be left intact and the L system model could be
replaced with any other suitable developmental model that works on strings.
It is this second possibility that will be investigated here.

1.2 Existing L Systems Software

The most widely used plant simulation package is L-Studio/cpfg and it uses
the combination of L systems and turtle interpreter. It consists of two parts:
L-Studio is the integrated development environment where a designer creates
and edits models, while cpfg is the software that runs simulations of the mod-
els and produces graphical output using a turtle interpreter. The software
package is accompanied by many examples that illustrate its power. For more
information one may browse the relevant Website [11].

2 A Hybrid Model

An advantage of L systems is that they are developmental mechanisms. Not
only do they construct a plant structure as it would exist at one particular
moment in time, but they describe its growth and development. This feature
must be preserved in a new P systems-based model.

2.1 Design Decisions

It is desirable to be able to combine models, thus constructing composite
developmental models. Let us consider the requirement to create a forest of
many types of trees, or to combine a leaf model and a branch model in order
to create a tree model in two parts. Modular design is an old and familiar
concept. It is highly desirable that the composite complex system remain
developmental.

The modular design is normally facilitated with the use of sub-L systems.
Multiple systems are labelled with integers and the first one is the main sys-
tem. One may use special symbols to “call” one system from another (Hanan
[8] constructs a loose analogy with subroutine calls in programming). A sub-
string from one system is thus processed by a subsystem as an axiom. The
resulting structure of the subsystem may be scaled geometrically, but it may
also continue to grow as part of the supersystem. The details of this mecha-
nism are given in the CPFG User’s Manual that accompanies the software.

In a P system it is reasonable to encapsulate multiple systems within mem-
brane regions. This makes it easier to reason about the hierarchy of subsystem
calls. As will be later discussed, this hierarchical structuring may assist in de-
bugging systems, with some relevant software support.
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Membranes may also assist in modeling switching events, as defined in
[13]. A switching event is an event that triggers some sudden change in the
growth of a plant. In reality, such an event may be either some change in
environmental conditions (weather, availability of water and nutrients, etc.),
or an internal delay mechanism. In L systems, this mechanism is facilitated
by table L systems and conditional rules ([13], pp. 66, 67).

In P systems where strings cross membranes, a set of regions may have a
different meaning. It may be interpreted as a set of alternative sets of rules
that may be applied to a growing string. Thus a string that travels through
different regions in the membrane structure is grown under varying conditions.

Toward this purpose, a somewhat non-standard idea has also been ex-
plored: that of making rules mobile, rather than strings. Rules may be asso-
ciated with lists of conditional targets. A conditional target is a region label,
associated with a Boolean expression, so that if the expression becomes true,
the rule migrates to that region. The simplest strategy for selecting among
multiple true expressions in a list would be to pick the first one.

Encapsulating parts of a system into membranes also makes it easier to
localise variables. In L systems, numerical data can be stored either as param-
eters associated with individual symbols, or as global variables. In membrane-
based systems, variables may be associated with regions. Then the whole prob-
lem of switching events does not any more require rule or string migration.
In L systems with C-like programming extensions, as defined in the CPFG
User’s Manual, rule preconditions may involve variables declared globally. In
membrane systems, preconditions may involve variables local to the region of
the rules. Like string-rewriting rules that modify strings, there can be arith-
metical rules that modify numerical variables.

The issue of how to collect the resulting strings arises with membrane-
based systems. In L systems this is trivial, since one string has always been
derived from the axiom after any number of steps. In P systems there can be
multiple strings.

In the case of membrane systems with migrating strings, a solution is to
use conditional targets to move strings into a special target compartment,
called result. This produces the complication of how to select among multiple
strings sent to the result during one simulation step.

In the more promising approach of membrane systems with nonmigrating
strings and rules, a solution with a more “natural” feel exists: strings may be
collected and concatenated by visiting regions recursively. For any region there
is exactly one string. This string may involve special symbols that reference
other regions. When collecting a string, any special symbol is to be replaced by
the string of the subregion it points to. This approach constructs an analogy
between the branching structure of plants and the hierarchical topology of
membrane regions.

In such systems, where strings and rewriting rules are not migrating,
communication through membranes is achieved with migrating variables and
arithmetical rules. These may move in the usual directions, that is either
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out one level, or in a submembrane of their current region. Such migrating
components may again be given lists of conditional targets.

Once a subsystem ceases computation, its result may or may not need to be
available to the containing membrane. In the first case, the submembrane may
be dissolved, thus flattening the string. The flattening process would involve
inserting the substring into the positions indicated by the special symbols,
which would then disappear. The issue of how dissolution may be triggered
arises.

Finally the possibility of rule rewriting was investigated. This is the pos-
sibility of rewriting the right hand side of a string-rewriting rule. These rule-
rewriting rules could be used to create an entire set of rules, each of which
would have a similar right hand side, but evolved at a different level. For
example, X symbols on the string representation of a tree could indicate the
positions where various branches are to be appended. The branches might
need to be of different ages. One may prepare a set of rules that will each
rewrite X with a branch of a different age. For example, the rule-rewriting
rule

A →l b A b

could operate on a rewriting rule such as

X → A B C

to give the following set of rules:

X → A B C

X → b A b B C

X → b b A b b B C

X → b b b A b b b B C

. . .

This set of rules could be applied nondeterministically on X symbols, to place
branches of various ages at random X positions. More usefully, a mechanism
may be devised so that the sequence of generated rules rewrites symbols of
increasing parameter values, e.g., X[1], X[2], X[3], . . .. However, the specifi-
cation of how this counting should proceed becomes complex, since many
parameters need to be specified or otherwise implied. These would include
the number from which counting starts, the amount of every increment, the
parameter or set of parameters that is to be modified, the maximal amount
of rules generated, etc.

The problem of when a rule may rewrite other rules and when it may be
rewritten also arises. This may be resolved by means of a label shown next
to the arrow of the production, here denoted by l. In the region r a rule with
a label attachment may be called active if l = r, and inactive otherwise.
Active rules may rewrite other rules, while inactive rules may have their right
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hand side rewritten by active rules. Thus, in a setting where rule migration
is allowed, rules can switch between these two states as they migrate in the
membrane structure. In models where rule migration is not allowed, rules may
be characterized as active or inactive according to another custom Boolean
condition.

While the idea of rule rewriting seems exciting at first, and indeed might
deserve further research, it is obvious that it requires several supporting mech-
anisms in its most general form. To summarize, the two major problems iden-
tified above involve

• resolving the issue of which rules rewrite which ones, and
• differentiating between generated rules.

If these issues are addressed in the context of a membrane-based plant model,
then the specification of metarules may become more complex than the prob-
lems such rules might address.

2.2 The Sub-LP Systems Model and Its Specification Language

Considering the reasoning presented above, the sub-LP systems model is de-
veloped. It is based on recursive strings, and features parametric symbols,
conditional string rewriting rules, migrating numerical variables and migrating
arithmetical rules; rule rewriting and dissolution have been also considered,
though not yet implemented by the software tool supporting the model.

The sub-LP systems model is based on the following four components:

• strings of symbols;
• rewriting rules that include communication and dissolution; these may be

either conditional or non-conditional;
• numerical variables that contain real numbers;
• arithmetical rules that act on numerical variables.

Before we formally define such a system we introduce for an alphabet V
the notation V A

n as denoting the set of elements a(r1, . . . , rp) where a ∈ V and
ri is an arithmetical expression constructed with variables from A, 1 ≤ i ≤ p,
0 ≤ p ≤ n. The set V A

n identifies all symbols of V with at most n parameters
from A.

A sub-LP system may be formally defined as a construct

Π = (V,A, µ,w1, . . . , wm, A1, . . . , Am, R1, . . . , Rm, T1, . . . , Tm),

where:

• V is an alphabet;
• A is a set of variables with real values;
• µ is a membrane structure of degree m; the membranes are labelled with

integers in the range 1 to m;
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• wi, 1 ≤ i ≤ m, represents a multiset of strings over V Ai

ni
, for a given ni

and a set of variables from Ai, possibly with an initial value;
• Ai, 1 ≤ i ≤ m, represents the set of variables from A used by membrane

i;
• Ri, 1 ≤ i ≤ m, represents the set of rules associated with membrane i; the

rules are of the form
– u : c →l v where c is a Boolean expression built with variables from

Ai, l is a value in the range 1 to m, u ∈ (V Ai

ni
)∗, and v ∈ (V Ai

ni
)∗×Tar,

where Tar = {out, inj , λ} defines the target of the rule;
– v can also contain the special notation ?name; the occurrence of this

special symbol will import a sub-LP system called name, which will be
added to the contents of the current membrane; the special symbol is
then written in the string in the form ?n, where n is the region label
of the top-level membrane of the newly imported subsystem;

– v can also contain the symbol δ which means dissolution of the mem-
brane where the rule is applied;

• Ti, 1 ≤ i ≤ m, represents the set of arithmetical rules present in the
membrane i of the form n ← e, where n ∈ Ai and e is an arithmetical
expression built with variables from Ai.

The rules from Ri and Ai are applied in parallel and it is assumed that no
conflicts occur between rule targets. The role of Ai rules is to compute some
parameters requested by different variables. When a membrane is dissolved
the rules are also delivered to the new context.

Systems are conveyed by means of a dedicated language, which allows for
constructs representing the various elements of the model. A detailed descrip-
tion of the model follows.

Membranes are used to separate the structure of the system into regions,
each of which performs computation. When regions do not communicate, each
performs an isolated computation. Membranes are labelled with distinct posi-
tive integers. A membrane’s region may contain any number (or none) of vari-
ables, arithmetical rules, string rewriting rules, and other membranes. Every
membrane contains one and only one symbol string. Thus sub-LP systems
are hierarchically structured just like P systems. The top-level membrane is
known as the skin membrane. The skin membrane and its symbol string are
the only required components of a sub-LP system.

Membranes are specified using curly brackets. The text between the two
curly brackets is made up of other membranes, and components that end in
a semicolon. The first statement of the membrane is required, and labels the
membrane’s region with a distinct positive integer. The second statement is
always the string associated with the region. For example:

{ region 3; A BC; }

is a membrane with label 3. The membrane contains the two symbol string
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A BC. The first symbol in the string is A and the second one is BC, since
symbols are separated by spaces and may have names of multiple characters.
An example of nested membranes is

{ region 10; A;
{ region 5; B; }
{ region 20; C d eF ; }

}

where membrane 10 contains two membranes, with labels 5 and 20.
If a region is labelled with 0, then the simulator assigns a fresh label to it

when it is constructed. This is useful for defining subsystems that are to be
dynamically imported.

Variables can hold floating-point numbers. Every variable is associated
with a region. Defining variables is done using the define keyword, which may
be abbreviated to def . The definition statement may specify a value to be
placed in the variable. Otherwise, the variable is taken to be equal to zero.
Initial values may be provided in the form of arithmetical expressions, but
cannot depend on other variables.

For example, the statement

{ region 1;
string;
def i;
def J = 5;
define z = 3 ∗ (9 + 1);
def pi = 3.14159;

}

constructs a membrane which contains four variables, named i, J, z, and pi,
initialized to 0, 5, 30, and 3.14159, respectively, while the statement

{ region 2;
string;
def foo = 1;
def bar = foo + 1;

}

will set both variables to 1 (variables are constructed in parallel and foo
is initialized to 0).

Arithmetical rules allow for the contents of a variable to be set to the result
of an arithmetical expression. The expression may involve decimal numbers,
parentheses, other variables, functions, a few special symbols, and arithmeti-
cal (+,−, ∗, /), logical (==, ! =, <=, >=, <,>), and boolean (&&, ||) opera-
tors. The meaning of the operators is as in the C programming language. As
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floating-point is the only acceptable data type, comparison operators return
either −1 or 0. The boolean operators take precedence over the comparison
operators, which take precedence over addition and subtraction, which take
precedence over multiplication and division. Functions are discussed later in
the text.

Three special values are always available: true is equal to −1, false is
equal to 0, and region is the label of the current region. If variables have one
of these names, these variables are hidden. It is thus not recommended to
name variables with one of these three names. If a variable does not exist in
the region it is referenced, its value is assumed to be 0.

The syntax of an arithmetical rule requires a left arrow written as←. The
target variable is on the left of the arrow, where the result is stored after
evaluation. On the right of the arrow the expression to evaluate is specified.
For example, the system

{ region 1;
string;
def x; def y = 1;
x ← y; y ← x + y;

}

will compute numbers of the Fibonacci sequence. For every variable definition
in the region, one arithmetical rule is applied at maximum. All the arithmeti-
cal rules to be applied are applied in parallel. Thus the system

{ region 1;
string;
def x; def y = 1;
y ← x + y; x ← y;

}

is equivalent to the previous one, and also computes the Fibonacci sequence,
although the two arithmetical rules are given in reverse order.

The system

{ region 0;
def x = 3 + 2;
define y = 8;
def z;
z ← x + 1 <= y || region ! = 4;

}

will set variable z to −1 since the condition is true. An equivalent expres-
sion with priorities made explicit would be
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z ← ( (x + 1) <= y) || (region ! = 4);

Strings are series of symbols. Any number of these symbols may be para-
metric. As mentioned above, a string is defined as a series of symbols separated
by spaces (and terminated with a semicolon, like any other construct).

Symbols have a name and optionally one or more parameters, as in para-
metric L systems. The name is composed of one or more consecutive letters.
Parameters are specified in square brackets and are separated by commas.
Each parameter may be specified as an arithmetical expression. For example,
the following system

{ region 1;
{A B Foo bar baz[3, 4.2] X[region + 1] x[x];
def x = 3;

}

will construct a membrane whose region contains a variable x, equal to 3,
and a string with the symbols A,B, Foo, bar, and baz (the last has two pa-
rameters, 3 and 4.2), followed by the symbol X with parameter 2 and another
symbol x with parameter 0. Note that the variable x is unknown at the time
of constructing the symbol x[x] because all contents of the membrane are
initialized in parallel. That is why the parameter is set to 0.

Rewriting rules are used to rewrite symbols in the same region with (se-
quences of) other symbols. Rewriting rules in sub-LP systems are based on the
rewriting rules of L systems. Unlike some rewriting P system variants, these
rules do not replicate strings. Rewriting rules are specified with the right ar-
row, →. On the left hand side of the arrow is the symbol to be rewritten. On
the right hand side is a list of zero or more symbols with which to replace the
left hand side symbol. An example follows:

{ region 1;
a abc ab[1, 2] ab[1, 3] a;
define x = 7;
a → c[4] a ab[1, 2] c[4];
ab[1, 2] → cba[x + 1];

}

The system shown above contains a string, a variable, and two rewriting rules.
After one simulation step, the string will become:

c[4.0] a ab[1.0, 2.0] c[4.0] abc cba[8.0] ab[1.0, 3.0] c[4.0] a ab[1.0, 2.0] c[4.0]

From this example several points should be observed:
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• All the instances of the symbol a are rewritten in parallel.
• The symbol ab with parameters 1 and 2 is rewritten with the second rule.
• The symbol ab with parameters 1 and 3 is not rewritten.
• The newly constructed symbol ab with parameters 1 and 2 is not rewritten;

only the old one is.
• Arithmetic is allowed in new parameters, and the region’s variables are

available.

Rewriting rules may be conditional and are specified as in parametric L
systems. In the system

{ region 1;
A[1, 2] A[2, 3] A[3, 2];
define y = 8;
A[x, 2] : x > 2 → B[2, x + 10] C;
A[x, y] : x == 1 → A[x + 1, y + 1];

}

the string becomes

A[2.0, 3.0] A[2.0, 3.0] B[2.0, 13.0] C .

This is because the first rule applies to A[3, 2] only and the second rule ap-
plies to A[1, 2]. The formal parameter y hides the region variable y. Note also
that in the first rule the two conditions are specified in two ways: as a literal
value of 2 in formal parameters, and as an explicit condition that the formal
parameter x is greater than 2.

The special notation ?name may appear on the right hand side of a rule.
The occurrence of this special symbol will import a system archived under
name in a system library. name may not be a number. The system will be
added to the contents of the current membrane. The special symbol is then
written in the string in the form ?n, where n is the region label of the top
level membrane of the newly imported subsystem. For example,

{ region 1;
A X Y ;
X → B ?test Z;

}

may become

{ region 1;

A B ?2 Z Y ;
{ region 2;
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f ;
f → f f ;

};
X → B ?test Z;

}

if the appropriate system named test exists. The result of this entire sys-
tem would now be A B f Z Y . In the next step it would be A B f f Z Y .
If a rule uses a subsystem multiple times in one rewrite operation, the sub-
system is loaded once and multiple special symbols point to it. Variables and
arithmetical rules can be specified so that they migrate within the membrane
structure according to some conditions (this is more general than the defini-
tion of a sub-LP systems). A list of target-condition pairs can be appended
at the end of any of the two components mentioned above, as follows:

component //sendto target1 if condition1
//sendto target2 if condition2

. . .

The conditions are evaluated left to right and the component migrates
to the region associated with the first condition found to be true. If no con-
dition is true, then the component does not migrate. Conditions are again
logical/arithmetical expressions.

The target can be one of:

• out, meaning that the component is to be moved to the next upper level
region;

• inx, where x is the label of a region immediately enclosed by the current
region; if x is not directly enclosed by the current region, the component
does not migrate and subsequent target-condition pairs are not evaluated.

In the following example the variable migrates:

{ region 1;
a;
X ← X + 1;
def X = 1 //sendto in2 if X > 3

// sendto out if X < 1;
{ region 2; b;

X ← X − 1; };
}

Here the variable will oscillate between regions 1 and 2. As mentioned
before, arithmetical rules may migrate in a similar fashion. Anything sent out
of the skin membrane is discarded.
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2.3 Sub-LP Systems Software Support

A software system has been prepared for testing the sub-LP systems models.
The SubLP-Studio application [6] parses code of the form discussed in the
previous section to produce models and simulate their behavior. As it produces
symbol strings at each simulation step, it passes them to cpfg for rendering.
Reusing cpfg makes the software simpler. Also, the comparison of L systems
and sub-LP systems is more objective, since the interpreting mechanism is
kept constant.

SubLP-Studio is a Java application. It includes a simple text editor for
preparing models and a window for viewing the progress of the simulation
schematically. This view may be updated after each simulation step, helping
the user observe errors and debug the system.

Systems that are referred to and loaded dynamically using the question
mark (“?”) symbol are actually loaded from files with .lps extensions.

Wherever numerical values are used in the systems, the software allows the
use of external functions. These external functions take the form of Java .class
files which may be compiled separately. A small set of examples accompanies
the software, and more may be defined by the user. These extend the flexibility
of the arithmetic-based control mechanism (i.e., the variables and arithmetical
rules).

3 Examples

We examine first a simple example using conditional and parametric L sys-
tems. The L system structure is

#define BODY STEPS 3
#define TERMINALSTEPS 2
Lsystem : 1
derivation length : BODY STEPS + TERMINALSTEPS
Axiom : A(1)
A(i) : i < BODY STEPS → I[+ + +A(i + 1)][−−−A(i + 1)]
A(i) : i == BODY STEPS → I[−−A(i)][−A(i)][+A(i)][+ + A(i)]
homomorphism
A → F
I → , F ;
end Lsystem

This system produces the graph structure shown in Figure 1. It may be ob-
served that the first rule applied iteratively (BODY STEPS times) produces
the tree body whereas the last one (applied TERMINALSTEPS times) is
responsible for the terminal structure. We will model this problem using sub-
LP systems without parameters, but with active and dissolution rules. Using
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the specification language presented previously, the corresponding sub-LP sys-
tem is

{ region 1;
{ region 2;
{ region 3;

A; 0;
n→ 3 n + 1; −− n = 0, 1, 2
3→ 3 <>; −− dissolution
A→ 3 I PUSH L L L A POP PUSH R R R A POP ;

};
{ region 4;

0;
n→ 4 n + 1; −− n = 0, 1
2→ 4 <>; −− dissolution
A→ 2 A;
A→ 4 I PUSH R R A POP PUSH R A POP

PUSH L A POP PUSH L L A POP ;
};
2→ 2 <>; −− dissolution

};
A→ 1 F ;
I → 1 F ;

}

This specification requires some explanations. It is obvious that this spec-
ification is much longer than the previous one, but it is more modular and has
no parameters. Membrane 3 computes the string for the body structure of the
tree. It involves symbols A which represent the terminal structures. Membrane
4 computes terminal structures in the form of a rule that rewrites A (the right
hand side of A→2 A). When membranes 3 and 4 are dissolved, membrane 2
combines the results and is dissolved. The skin membrane contains the homo-
morphism transformations. The rules n→ x n+1, x = 3, 4, might be replaced
by arithmetical rules n← n+1 which will act as incrementing rules for values
stored in n in membranes 3 and 4.

Even more modularization is presented by the next example, that produces
the structure shown in Figure 2.

The L systems-based specification is

#define STEPS 4
Lsystem : 2
derivation length : STEPS
Axiom : A
A → I[+A][−A]IA
I → II
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Fig. 1.

homomorphism
A → F
I → , F ;
endlsystem

The L system is admittedly represented in a compact way. Stems are rep-
resented with A symbols if they are about to branch, or with I symbols if they
are about to double in size. The special homomorphism section maps them all
to the F drawing symbol before each rendering. The same structure would be
produced by the following equivalent sub-LP system, which is split into two
files:

example2.lps:
{ region 0;

F ;
F → ?example2b

PUSH L ?example2 POP
PUSH R ?example2 POP
?example2b ?example2 ;

}
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Fig. 2.

example2b.lps:
{ region 0;

F ;
F → F F ;

}

example2b is a subsystem that is used in place of the I → II rule, thus
avoiding the need for a homomorphism. example2 refers to itself, thus again
avoiding the need to distinguish between A and I stems. The sub-LP system
has a longer textual representation, partly because of the multicharacter sym-
bols, partly because of the extra subsystem. However, symbols that are meant
to draw stems are always F ; membranes are used to control which stems grow
and which ones branch.

The initial state of the system is a system loaded from the example2.lps
file. The system after the first transition constructs two other membranes.

{ region 0;
?3 PUSH L ?2 POP PUSH R ?2 POP ?3 ?2;
{ region 2;

F ;
F → ?example2b

PUSH L ?example2 POP
PUSH R ?example2 POP
?example2b ?example2 ;
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}
{ region 3;

F ;
F → F F ;

}
F → ?example2b

PUSH L ?example2 POP
PUSH R ?example2 POP
?example2b ?example2 ;

}

When the rule in the example2 system calls for two new copies of example2,
only one instance is actually constructed, and two references point to it. This
keeps the system smaller by reusing computation and memory. At simulation
time t, there are 2t + 1 membranes in the system.

4 Discussion

4.1 Advantages of Sub-LP Systems

P systems are systems of nested membranes. This nestedness implies a tree-like
hierarchy of regions, which has an analogy with branching in plant structures.
This analogy is only loosely used in sub-LP systems, as branching is modeled
by both grammatical rules and membrane nesting. Allowing this option gives
the designer freedom to either exploit the representational compactness of L
system-like grammatical rules, or to use membranes to localise computation.

Using membranes of subsystems gives an opportunity for additional control
mechanisms to be localized. In the particular model presented here, the control
mechanism consists of arithmetical rules and numerical variables. In the sub-
LP systems language, these are defined close to the parts of the plant structure
they affect.

The analogy with programming would be that of local procedures and
variables. The designer is encouraged to solve a modeling problem in a bottom-
up fashion, since subsystems can also be self-sustained entities. The designer
is also encouraged to reuse computation by exploiting self-similarity in plants.

While such features as the ones discussed above are technically available
in the sub-LP systems model, membranes model locality in a more intuitive
way. An increase in designers’ productivity is expected of the proposed model;
this could be investigated with rigorous experimentation of the kind typically
applied to software engineering to evaluate programming languages.

To continue the analogy of plant modeling with software engineering, the
simulator software includes some primitive form of debugging. In between sim-
ulation steps the designer can view the state of the system; variable contents
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and strings are readily inspected, and membrane nesting is represented graph-
ically.

This possibility arises due to the fact that membranes “factor” the sys-
tem into small and easy to understand units. The single string of L systems
on the other hand quickly becomes long and unintelligible. The hierarchical
structure is difficult for humans to follow in the seemingly linear sequence of
symbols. A more tight loop between design and simulation should allow for
more productive interaction with the modeling software.

4.2 Language Legibility

There are some technical differences between the language employed for L
systems and the one employed for sub-LP systems. In particular, the newly
proposed language has the following features:

• Curly brackets ({}) to denote the concept of subsystems.
• Multicharacter symbols, an idea proposed in [23].
• Easy to remember “mnemonics” for the turtle commands.
• Rules that cross line boundaries.

The purpose of these design decisions is to increase readability. Complex
L systems can be compactly represented, but will tend to appear like “line
noise” to the untrained eye. Again, a relevant programming analogy is to
compare compact Perl code to Java code: the latter is lengthier but requires
less training to understand. If enough emphasis is put on the readability of
model representations, then eventually plant modeling will become accessible
to non-scientists, such as artists and graphics designers.

5 Conclusions

In this chapter we studied the opportunity to model plants growing and their
graphical representation by using some variants of P systems. The approach
develops a model and a specification language based on L systems models and
their use in graphics. The approach presents a more modular view on modeling
in general and plant development in particular. It shows some advantages in
this respect illustrated by two very simple examples, but it requires more
thorough investigation for us to prove its entire capabilities. We also studied
the power of a class of P sysems (with rule rewriting) that is used in modeling
plant development for graphical purposes.

ANNEX: Some Theoretical Results Regarding Rule Rewriting

In the previous discussion were presented a number of operations associated
with rewriting rules that require further research in order for us to estab-
lish their properties and computational power. Rewriting rules were defined
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containing on the right hand side references to other membrane structures
that yield a new structure containing at the rule level (a) an instance of the
membrane structure referenced by the rule and (b) a reference in the strings
rewritten by that rule to the newly instantiated membrane structure. This
powerful mechanism deserves some further investigation in order for us to see
to what extent the computation capabilities of membrane systems with this
feature increases. Another operation suggested in the same subsection deals
with rewriting the right hand side of some rules when they are inactive (rule
rewriting).

Here, we present some results concerning the power of rule rewriting in
P systems with string objects by formalizing some of the ideas mentioned
before. Specifically, we introduce a model of rewriting P systems that includes
both the feature of rule rewriting and the feature of rule moving. This means
allowing both strings and rules to be moved from one region to another with
the right hand side of the rules possibly modified during this process. Formally,
we give the following definition.

Definition 1. A rule rewriting P system is a construct

Π = (V, T, µ,M1, . . . ,Mn, R1, . . . , Rn),

where:

1. V is a finite alphabet of abstract symbols;
2. T ⊂ V is the terminal alphabet;
3. µ is a membrane structure with n membranes injectively labeled with num-

bers in {1, . . . , n};
4. Mi, for each 1 ≤ i ≤ n, is a finite language over V that contains the

strings initially present in region i;
5. Ri, for each 1 ≤ i ≤ n, is a finite set of rules that are initially assigned

to the region i; they can be of the following forms:
a) a → (x, t), with a ∈ V , x ∈ V ∗, and t ∈ {here, in, out} (rewriting

rules),
b) a → (x, t1; y, t2), with a ∈ V , x, y ∈ V ∗, and t1, t2 ∈ {here, in, out}

(rule-rewriting rules).

A rule rewriting P system is characterized by a hierarchical arrangement
of n ≥ 1 membranes injectively labeled {1, . . . , n}, which identify n distinct
regions inside the system. Each region i, with i ∈ {1, . . . , n}, gets assigned
a finite set of strings Mi and a finite set of rules Ri. More precisely, the
structure of the system is given by µ, a string of pairs of matching square
brackets injectively labeled {1, . . . , n}, such as

[1 [2 ]2 [3 [4 ]4 [5 ]5 ]3 ]1, (1)

where each pair of matching square brackets corresponds in a one-to-one man-
ner to a membrane in the system. This representation makes it possible to



Membrane-Based Devices Used in Computer Graphics 273

point out the relationships of inclusions among the regions delimited by the
membranes. For instance, for the membrane structure (1), we can say that
region 3 (i.e., the region delimited by membrane 3) directly includes or con-
tains region 4 and region 5. Moreover, membrane 1 that delimits the outmost
region is called the skin membrane, and this defines the boundaries of the
system. Finally, regions that do not contain any other regions, like regions 2,
4, and 5, are called elementary regions.

A rule rewriting P system Π evolves by applying inside each region i the
set of rules currently assigned to region i to the strings currently assigned to
region i. Specifically, if a region i contains a string x1 a x2 and a rewriting
rule a → (x, t), with a ∈ V , x, x1, x2 ∈ V ∗, and t ∈ {here, in, out}, then
the string x1 a x2 can be replaced by a string x1 xx2, which is immediately
moved form region i to another region according to the target t. This target
can be either here, that is the string will remain in region i, or out, that is
the string will reach the region that directly contains region i, or in, that is
the string will reach one of the regions, nondeterministically chosen, directly
contained by region i. In a similar way, if a region i contains a string x1 a x2

and a rule rewriting rule a → (x, t1; y, t2), with a ∈ V , x, x1, x2 ∈ V ∗, and
t1, t2 ∈ {here, in, out}, then the string x1 a x2 can be replaced by a string
x1 xx2, which is immediately moved form region i to another region ac-
cording to the target t1. Moreover, as a consequence of this operation, all
rules of the form b → (y1 a y2, t) or b → (y3 a y4, t

′

1; y
′, t′2), with a, b ∈ V ,

y1, y2, y3, y4, y
′ ∈ V ∗ and t, t′1, t

′

2 ∈ {here, in, out}, can be replaced by rules
of the form b → (y1 y y2, t) or b → (y3 a y4, t

′

1; y
′, t′2), respectively, which are

immediately moved from region i to another region according to the target t2.
As usual, all these rules are applied in a nondeterministic maximally parallel
manner. In each step, in each region, all the strings that can be rewritten by
some rewriting rules or rule-rewriting rules must be rewritten in a sequential
way by nondeterministically choosing a single rule for each string. Then, all
the rules that can be rewritten by some of the rule-rewriting rules currently
used must be rewritten in a sequential way by nondeterministically choosing
a single rule-rewriting rule for each rule.

Therefore, by operating in this way, a computation in a rule rewriting P
system Π is obtained by starting from the initial configuration and varying the
contents of the various regions of the system in terms of sets of rules and sets
of strings they get assigned. A computation in Π is said to be successful if it
reaches a configuration where no more rules can be applied to the strings and
the rules contained in the system. A successful computation in Π produces
as output the language obtained by collecting the strings of symbols in T
that are moved out from the region delimited by the skin membrane during
the computation. The language L(Π) generated by the P system Π is then
defined by the union of all these languages generated as outputs of all the
successful computations in Π. Finally, we introduce ELrRPn, with n ≥ 1, as
the families of languages generated by rule rewriting P systems with at most
n membranes.
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In the context of P systems, rewriting alone has been shown not to be
enough to obtain the whole class of recursively enumerable languages; the
largest family of languages generated by rewriting P systems coincides in fact
with the family of languages generated by matrix grammars without appear-
ance checking [18]. For this reason other special features have been considered
for rewriting P systems, such as a priority relationship among the rules, per-
mitting and forbidding conditions associated with the rules, replicated rewrit-
ing, and control of membrane permeability [18], which increase the power
of rewriting P systems and lead to various characterizations of recursively
enumerable languages.

Here we want to prove a similar result for rule rewriting P systems by show-
ing that they are able to generate the whole family of recursive enumerable
languages. For this, we need to formally introduce the notion of matrix gram-
mars with appearance checking from [3]. A matrix grammar with appearance
checking is a construct G = (N,T, S,M,F ) where N,T are disjoint alphabets,
S ∈ N , M is a finite set of sequences of the form (A1 → x1, . . . , An → xn),
n ≥ 1, with Ai → xi a context-free rule over N ∪ T , for all 1 ≤ i ≤ n, and F
a set of occurrences of rules in M . Given w, z ∈ (N ∪T )∗, we write w =⇒ z if
and only if there is a matrix (A1 → x1, . . . , An → xn) ∈M such that w = w1,
z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′

i , wi+1 = w′

ixiw
′′

i , for
some w′

i, w
′′

i ∈ (N ∪T )∗, or wi = wi+1, Ai does not appear in wi, and the rule
Ai → xi appears in F (the rules of a matrix are applied in sequence, possibly
skipping the rules in F if they cannot be applied; we say that the rules in F
are applied in appearance checking mode).

The language generated by a matrix grammar with appearance checking
G is defined by L(G) = {w ∈ T ∗ |S =⇒∗ w }. The family of languages of this
form is denoted by MATac; it is known that MATac = RE (see [3]), where
RE denotes the family of recursively enumerable languages. We refer to [22]
for further details about formal language theory.

A matrix grammar with appearance checking G = (N,T, S,M,F ) is said
to be in binary normal form if N = N1 ∪ N2 ∪ {S,#}, with the three sets
mutually disjoint, and the matrices in M assume one of the following forms:

1. (S → X A), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x) with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

There is only one matrix of type 1, and F consists exactly of all rules A→ #
appearing in matrices of type 3; # is a trap symbol, and once introduced,
it is never removed. A matrix of type 4 is used only once, in the last step
of the derivation. Note that, given a matrix grammar G, in every step of a
derivation, the strings produced by applying the matrices in M assume the
form αw, with either α ∈ N1, w ∈ (N2 ∪ T )∗ or α = λ, w ∈ T ∗. That is,
in every step we have only one symbol in N1 which is used to control the
rewriting of symbols in N2; the unique symbol in N1 is deleted in the last
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step of the derivation by applying a matrix of type 4. It is known that for
each matrix grammar there exists an equivalent matrix grammar in the binary
normal form (see Lemma 1.3.7 in [3]). Moreover, it has been proved in [4] that
each recursively enumerable language can be generated by a matrix grammar
with appearance checking in binary normal form, G, with ac(G) ≤ 2, where
ac(G) is the cardinality of the set {A ∈ N2 |A → # ∈ F }. This means all
the matrices of type 3 are of the form (X → Y,A → #), with X,Y ∈ N1,
A ∈ {B1, B2} ⊆ N2.

Now, we can prove the following result.

Theorem 1. ELrRP7 = RE.

Proof. Consider a matrix grammar with appearance checking G = (N,T,
S,M,F ) where

• F = {B1, B2},
• matrices of type 2 and 4 are injectively labeled with values in {1, . . . , k},
• matrices of type 3 of the form (X → Y,B1 → #) are injectively labeled

with values in {k + 1, . . . , h},
• matrices of type 3 of the form (X → Y,B2 → #) are injectively labeled

with values in {h + 1, . . . , n}.

It is proved in [14] that each matrix grammar without appearance checking
can be simulated by a rewriting P system with three membranes. This means
we can construct a P system Π = (V, T, [1 [2 [3 ]3]2 ]1,M1, ∅, ∅, R1, R2, R3) that
is able to simulate all the matrices of type 2 and 4 in G in exactly the same
way as in the proof of Theorem 4.1 in [14]. Then, in order to simulate matrices
applied in appearance checking mode, we define a rule rewriting P system Π ′

such that

Π ′ = (V ′, T, µ′,M ′

1,M
′

2, ∅, ∅,M
′

4, ∅,M
′

6, ∅, R
′

1, R
′

2, R
′

3, R
′

4, R
′

5, R
′

6, R
′

7)

where:

V ′ = V ∪ {Xi, X
′

i, X
′′, X̄, $i |X ∈ N1, k + 1 ≤ i ≤ n } ∪ {$1, $2},

µ′ = [1 [2 [3 ]3 ]2 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]1,

M ′

1 = {XA | (S → XA) is the unique matrix of type 1 in M},

M ′

2 = {$1$2},

M ′

4 = {$1, $2},

M ′

6 = {$1, $2},

R′

1 = R1 ∪ {X
′′ → (X,here) |X ∈ N1, k + 1 ≤ i ≤ n }

∪ {X → (Xi, here), Xi → (X ′

i, in;λ, in) |X ∈ N1, k + 1 ≤ i ≤ n }

∪ {#→ (#, here)}

∪ {$1 → ($iXi, here) |X ∈ N1, k + 1 ≤ i ≤ h }

∪ {$2 → ($iXi, here) |X ∈ N1, h + 1 ≤ i ≤ n },
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R′

2 = R2 ∪ {X
′

i → (#, out), $i → (#, out) |X ∈ N1, k + 1 ≤ i ≤ n },

R′

3 = R3,

R′

4 = {X ′

i → (#, out), $i → (#, out) |X ∈ N1, h + 1 ≤ i ≤ n }

∪ {$i → (Ȳ , in; $iXi, out) | i : (X → Y,B1 → #) ∈M }

∪ {X ′′ → ($1, here; X̄, in) |X ∈ N1 }

∪ {B1 → (#, out)},

R′

5 ∪ {X
′

i → (Ȳ , out) | i : (X → Y,B1 → #) ∈M }

∪ {Ȳ → (Y ′′, out;Y ′′, out) |Y ∈ N1},

R′

6 = {X ′

i → (#, out), $i → (#, out) |X ∈ N1, k + 1 ≤ i ≤ h }

∪ {$i → (Ȳ , in; $iXi, out) | i : (X → Y,B2 → #) ∈M }

∪ {X ′′ → ($2, here; X̄, in) |X ∈ N1 }

∪ {B2 → (#, out)},

R′

7 ∪ {X
′

i → (Ȳ , out) | i : (X → Y,B2 → #) ∈M },

∪ {Ȳ → (Y ′′, out;Y ′′, out) |Y ∈ N1}.

The P system Π ′ simulates the matrices of type 2 and 4 in M in exactly
the same way as the P system Π by using the rules in R1, R2, and R3. The
simulation of matrices of type 3 is done in the following way.

At a given time in any computation in Π ′, we can assume to have produced
inside region 1 a string of the form Xw, with X ∈ N1, w ∈ (N2 ∪ T )∗. This
string represents a sentential form of the grammar G produced after some
applications of the matrices in M . In order to simulate a matrix i : (X →
Y,B1 → #) ∈ M , with k + 1 ≤ i ≤ h, we apply first the rewriting rule X →
(Xi, here) from R′

1 and then the rule-rewriting rule Xi → (X ′

i, in;λ, in) from
R′

1. In this way, we can move both the string X ′

iw and the rule $1 → ($i, here)
inside region 2, region 4, or region 6; these two objects can obviously finish in
two different regions.

If the string X ′

iw reaches region 2, then an infinite computation is gener-
ated because of the rules X ′

i → (#, out) in R′

2 and #→ (#, here) in R′

1. In a
similar way, if the string X ′

iw reaches region 6, an infinite computation is gen-
erated because the unique rules from R′

6 that can be used are X ′

i → (#, out)
and B2 → (#, out). This means the unique chance to complete the simulation
of the matrix i is by string X ′

iw being moved inside region 4. In this latter case,
we generate an infinite computation if (and only if) the string X ′

iw contains
a symbol B1 (first the rule B1 → (#, out) from R′

4 is applied and then the
rule # → (#, here) from R′

1 is used). Therefore, if the string X ′

iw does not
contain any symbol B1, then we can complete the simulation of the matrix
i by replacing the symbol X ′

i with the nonterminal Y . For this we need the
rule $1 → ($i, here) to also be in region 4. Notice that:

• if the rule $1 → ($i, here), with k + 1 ≤ i ≤ h, reaches region 2, then
an infinite computation is generated because of the string $1$2 in M ′

2, the
rule $i → (#, out) in R′

2, and the rule #→ (#, here) from R′

1;
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• if the rule $1 → ($i, here), with k + 1 ≤ i ≤ h, reaches region 6, then an
infinite computation is generated because of the string $1 in M ′

6, the rule
$i → (#, out) in R′

6, and the rule #→ (#, here) from R′

1.

If the rule $1 → ($i, here), with k + 1 ≤ i ≤ h, reaches region 4, then the
string $1 can be replaced by $i and, in the next step of computation, we
can use the rule $i → (Ȳ , in; $iXi, out) from R′

4. This rule returns the rule
$1 → ($iXi, here) into region 1 and moves the string Ȳ into region 5. At this
point we can apply the rule Ȳ → (Y ′′, out;Y ′′, out) from R′

5, which moves
back the string Y ′′ into region 4 together with the rule X ′

i → (Y ′′, out).
Next, we apply this rule to the string X ′

iw in region 4 by moving in this
way the string Y ′′w into reach region 1. At the same time, by using the rule
Y ′′ → ($1, here; Ȳ , in) from R′

4, the string Y ′′

4 in region 4 is replaced by a
string $1 and the rule X ′

i → (Ȳ , out) is returned to region 5. Finally, when the
string Y ′′w reaches region 1, the symbol Y ′′ is replaced by the nonterminal Y
and the simulation of the matrix i ends.

A matrix i : (X → Y,B2 → #) ∈ M , with h + 1 ≤ i ≤ n, is simulated in
a similar way by using regions 6 and 7 instead of regions 4 and 5.

Therefore, we can say the rule rewriting P system Π ′ correctly simulates
the matrix grammar G and L(Π ′) = L(G). 2

Theorem 1 shows that the feature of rule rewriting effectively increases the
power of rewriting P systems by providing a characterization of recursively
enumerable languages. Moreover, Theorem 1 shows that the hierarchy on the
number of membranes collapses at level 7; the optimality of this result is not
known though, and it is very likely that this result will be further improved.

However, the model of rule rewriting P systems considered here is based
on sequential rewriting: in each region each string is rewritten by at most a
rule at a time. In this respect, parallel rewriting represents an obvious and
interesting alternative, especially in the context of LP systems models. Parallel
rewriting is in fact one of the defining characteristic of every L system. In the
case of P systems, parallel rewriting can be introduced in various forms [18],
with the further difficulty of defining how to move a string from one region
to another once this has been rewritten by many different rules at the same
time. An elegant solution to this problem that can be found in [2] is based
on parallel rewriting P systems without target conflicts. In these systems, the
rules to rewrite a certain string might be chosen according to a specific parallel
rewriting method, but from the set of rules that are applicable at a certain
moment, only those that agree on the target specification can be applied. If
there are rules in the applicable set of rules with different targets, then only a
proper subset of these rules will be actually used. The main result obtained in
[2] shows that the largest family of languages generated by parallel rewriting P
systems coincides with the family of languages generated by extended tabled
0L systems, denoted by ET0L.

Here, we want to consider a variant of parallel rewriting P systems without
target conflicts augmented with the feature of rule rewriting as specified in
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Definition 1. Specifically, we choose to adopt the parallel rewriting method
called maximal parallelism: at any time, all the symbols in a string that can
be rewritten according to some rules must be rewritten; the rule to be applied
to a specific symbol is nondeterministically chosen from among all those that
can be applied. In the case of P systems with rule rewriting, this means:

• in each step, in each region, each string that can be rewritten by some
rules must be rewritten; each of these strings is rewritten according to the
maximal parallelism rewriting method by choosing for each string a set of
rules without target conflicts;

• in each step, each rule that can be rewritten by some of the rewriting
rules used in that step of computation must be rewritten; each of these
rules is rewritten according to the maximal parallelism rewriting method
by choosing for each string a set of rules without target conflicts.

Then, the notions of computation and language generated by a parallel rewrit-
ing P system with rule rewriting is defined in exactly the same way as in the
sequential case. The family of languages generated by parallel rewriting P
systems with rule rewriting and with at most n ≥ 1 membranes is denoted by
ELPrPn.

Next, parallel rewriting P systems with rule rewriting are proved to be
more powerful than parallel rewriting P systems without target conflicts by
showing that they can generate languages that are not in ET0L. However,
a more precise characterization of the families of languages ELPrPn, with
n ≥ 1, remains to be found.

Theorem 2. ET0L ⊂ ELPrP3.

Proof. The inclusion ET0L ⊆ ELPrP3 is a direct consequence of the results
obtained in [2]. In fact, it is proved in [2] that, in the case of maximal par-
allelism, each language in ET0L can be generated by a parallel rewriting P
system without target conflicts with at most two membranes. This means we
just need to prove strict inclusion by showing that parallel rewriting P systems
with rule rewriting and at most three membranes can generate languages that
are not in ET0L. For this, consider the P system Π such that

Π = (V, T, [1 [2 [3 ]3 ]2 ]1∅, {A}, {B}, R1, R2, R3),

where:

V = {a, b, A,B,C,X,#},

T = {a, b},

R1 = {A→ (λ, out), X → (λ, out)},

R2 = {A→ (AX,here), a→ (a, out)},

R3 = {B → (λ, here;λ, out), B → (B, here; bB, here)}

∪ {X → (abB, here)}.
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It is easy to see that the parallel rewriting P system Π with rule rewriting
generates the language L(Π) = {(abn)m | 1 ≤ n ≤ m }, which is known not to
be in ET0L (e.g., see [22]). In fact, by starting from the initial configuration,
we can apply the rule B → (B, here; bB, here) from R3 and the rule A →
(AX,here) from R2 an arbitrary number of times. This means we obtain
a string of the form AXn−1 in region 2 and a string of the form bn−2B, a
rule B → (bn−1B, here; bB, here), and a rule X → (abnB, here) in region
3, with n ≥ 1. Next, we can apply the rule B → (λ, here;λ, out) from R2,
which moves the rule X → (abn, here) into region 2 together with the rule
B → (bn−1, here; bB, here). At the same time, the rule A→ (AX,here) from
R2 is applied once more, and this produces the string AXn inside region 2.
At that point, the rule X → (abn, here) becomes available in region 2, and
each occurrence of the symbol X in the string AXn can be replaced by an
occurrence of the string abn. This is done in parallel with the application of the
rule A → (AX,here). The parallel application of the rules X → (abn, here)
and A → (AX,here) can be then repeated an arbitrary number of times in
order to produce a string of the form AX(abn)m, with 1 ≤ n ≤ m, inside region
2. After that, we can finish the computation by applying a rule a → (a, out)
for each occurrence of the symbol a in the string AX(abn)m. In this way, the
string AX(abn)m reaches region 1 and the string (abn)m can be produced as
output of the computation by applying in parallel the rules A→ (λ, out) and
X → (λ, out) from R1. 2

Rule rewriting has been introduced in P systems with the specific mo-
tivation of capturing aspects of modularity typical of some of the existing
extensions of L systems. In this respect, rule rewriting can be interpreted as
an operation to develop a particular substring inside a region of the system in
the form of a rule that can be moved from one region to another and used to
insert the substring into another string present in the system. Another moti-
vation for rule rewriting P systems comes from [19] where the research topic is
formulated that concerns P systems where the rules are moved instead of the
objects. In the model of rule rewriting P systems considered here, both rules
and strings can be moved, but rules can be moved only as a consequence of
the rules applied to the strings currently associated with the various regions
of the system. In a sense, this feature introduces a certain level of interaction
among the strings in various regions of the system. This is an interesting fea-
ture that is considered for rewriting P systems and it might deserve further
and deeper investigation.
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Summary. We develop an analysis of the Needham-Schroeder public key protocol

in the framework of membrane computing. This analysis is used to validate the

protocol and exhibits, as expected, a well known logical attack. The novelty of our

approach is to use multiset rewriting in a nest of membranes. The use of membranes

enables us to make airtight the conditions for detecting an attack. The approach

has been validated by developing a full implementation for several versions of the

analysis.

1 Goal and Motivations

Since the 1994 landmark demonstration by Adleman of the possibilities of
DNA to solve a class of combinatorial problems, biocomputing has often
been advocated to develop “chemically combinatorial problem solvers.” In
this chapter, we want to use an approach belonging to the membrane com-
puting [23] area to address a well known combinatorial problem: the analysis
of a cryptographic protocol.

Our starting point is the logical analysis of the Needham-Schroeder public
key protocol (NSPK). The goal of the logical analysis is to find an interleav-
ing of elementary actions (sending and answering messages) that allows an
intruder to obtain confidential information. We have chosen this problem be-
cause it is simple to explain, and, at the same time, requires sophisticated
data structures for the exploration of its state space, is paradigmatic of this
kind of application, and has a well known solution, so that we can validate
our result.

The approach taken in this chapter is brute force and consists of the ex-
ploration of the state space of the protocol for a systematic search of attacks.



284 O. Michel, F. Jacquemard

Indeed, we are interested in the study of the representation and generation
of states, rather than in designing a new and smart search strategy. This ap-
proach is motivated by the opinion that the representation of data is a central
problem in biocomputing.

The rest of this chapter is organized as follows. In Section 2 we give
some background on the logical analysis of cryptographic protocols. Section 3
describes precisely the Needham-Schroeder public key protocol. Section 4
presents the technical meat of the chapter. We develop a version of the anal-
ysis of the NSPK that improves a similar analysis initially proposed within
the ELAN rewriting framework [5], with a more accurate representation of
states using nesting. In the appendix are given a short presentation of the MGS
language, which enables a kind of membrane computing, and the MGS code of
the algorithms detailed in Section 4.

2 Formal Verification of Cryptographic Protocol

In this section, we give a brief introduction to the verification problem we
shall consider. Cryptographic protocols define the exchange of a few messages
between parties in order to distribute some secret data like cryptographic keys
or to authenticate themselves. These messages are built with cryptographic
primitives, like encryption, signature, or hash functions, and therefore the se-
curity of protocols relies on the strength of the cryptographic functions in
use. However, it appears that even though these functions are assumed un-
breakable, the security of a protocol can be compromised by an unexpected
interleaving of messages between honest agents and a malicious intruder which
has some limited control over the communication network (e.g., wiretapping
some messages or impersonating identities while sending new ones). For in-
stance, the well known problems of the distribution of keys for symmetric
cryptosystems like AES (Advanced Encryption Standard) and the authentic-
ity of public keys in PKIs (Public Key Infrastructure) are beyond the scope
of the study of encryption functions.

Such logical attacks can be realized at almost no computational cost and
hence can have disastrous consequences. Various formal methods have been
proposed for the automation of the analysis of the vulnerability of crypto-
graphic protocols to logical attacks, both for searching for flaws of this kind
or for the formal proof of their absence. Several systems have been imple-
mented for the purpose of searching for flaws, e.g., [18, 17, 13]. But many
general purpose languages and tools have also appeared appropriate in this
setting, with the advantage of a greater expressive power, efficiency, and ma-
turity. To cite only a few examples, there are model checkers like FDR [16] or
murϕ [21], first order theorem provers [25, 14] and declarative languages used
as model checkers [7, 5].

Our purpose in this chapter is to describe an experiment using mem-
branes for modeling a cryptographic protocol and finding attacks by state
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exploration. The declarative style supported by the membrane computing
framework is strongly advocated by the intruder-centric model which is gen-
erally considered in order to apply formal methods to cryptographic protocol
verification. In this model, often referred as the “Dolev-Yao model” [8], the
agents executing the protocol communicate asynchronously via a unique chan-
nel which has been compromised by an intruder. The intruder is able to spy
and divert every message on the channel, and to analyze read messages, with
the restriction that he must know the appropriate encryption key in order
to decipher an encrypted message. It can also build and send new messages,
possibly under a fake identity. The global state of the system can hence be
represented by a heterogeneous set containing the local states of each agent
(with a bounded memory), the messages and submessages known to the in-
truder, and the messages sent and not yet received by an agent. The actions
of the agents (receiving and sending messages) as well as of the intruder can
be modeled using rewriting rules on multisets. The search for an interleaving
leading to an attack can be coded very simply with an appropriate pattern
expression to find sequences of value or arbitrary length.

The problem of finding attacks of protocols is highly undecidable, the state
space being infinite for several reasons: the unboundedness of the number of
agents present, the ability of agents to generate fresh random data (nonces),
the unlimited size of terms generated by the intruder. In order to restrict our
exploration to a finite search space, while keeping our procedure reasonably
complete, we shall rely on some theoretical results about protocol verification.
It is shown in [24] that the problem of protocol security (non-existence of
attacks) becomes decidable when the number of agents considered is bounded.
Indeed, [24] shows that in this case, whenever there exists an attack, there
exists an attack involving messages of a bounded size. We can use this result
here to ensure the completeness of our attack search procedure, given a finite
number of agents.

3 The Needham-Schroeder Public Key Protocol

The Needham-Schroeder public key protocol [22] (NSPK for short) is the
favorite example for the application of formal methods to the verification of
cryptographic protocols. This popularity comes from one of the most famous
success stories in this domain, which is the discovery in 1994 by G. Lowe [16] of
a replay attack in this protocol 16 years after its publication. In [16], G. Lowe
models the protocol in the CSP process algebra and uses the model checker
FDR to explore the state space. We obtain here the same result with a model
based on membrane computing, implemented in the language MGS.

3.1 Description of the Protocol

The Needham-Schroeder public key protocol involves two participants, Alice
(A) and Bob (B), willing to authenticate reciprocally with three messages us-
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ing public keys. The original protocol of [22] also involves a server distributing
the public keys to A and B with three additional messages. We omit the server
and its three messages here, assuming that A and B both initially know each
other’s public key, since they are not necessary in Lowe’s attack. The messages
are described below in the usual notation (see also Figure 1):

REQ A → B : {A,Na}K(B)

CHAL B → A : {Na, Nb}K(A)

AUTH A → B : {Nb}K(B)

In the first message (labelled REQ), Alice generates a random number (nonce)
Na, appends it to her name A (the append operator is denoted , ) encrypts
the results with Bob’s public key K(B) (public key encryption is denoted
with the binary operator { } ) and sends the result to the network. When
Bob receives a message in the form of REQ, he deciphers it and retrieves the
identity A of Alice and the nonce Na. Then he generates a second random
number Nb, appends it to Na and sends back the result encrypted with Alice’s
public key K(A) (message CHAL for challenge). Alice, receiving message CHAL,
can decipher it and check whether the first component corresponds to the
nonce she sent in message REQ. Then, she resends Bob’s nonce Nb encrypted
with Bob’s public key (message AUTH). Bob can check that the message AUTH

contains the nonce Nb he has generated at second step (CHAL).

A

B

A

B

{A, N
a}K(B)

REQ

{Na, Nb}K(A)

CHAL
{N

b}K(B)

AUTH

Fig. 1. Description of the NSPK protocol.

3.2 A Replay Attack

Receiving the message AUTH assures Bob that Alice has really received the
message CHAL and answered, because Alice is the only one able to decipher
this message. We assume that each agent, as well as the intruder (let us call
him Charly, C), knows only its own private key, and that this key is necessary
to decipher a message encrypted with the corresponding public key.

Similarly, when receiving the message CHAL, Alice is assured that it really
comes from B (and is not a fake message from Charly), as proven by the
presence of Na, because the knowledge of Bob’s private key is necessary for
the extraction of Na from the message REQ. Hence, Na and Nb are used as
authenticators in this protocol, and they must remain secret. However, the
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attack of [22], described in Figure 2, shows that this is not the case, even with
the above hypotheses concerning the private keys.

This attack involves two sessions in parallel. In the first session, Alice enters
into communication with Charly (without knowing that he is an intruder).
Since the message REQ is encrypted with Charly’s public key K(C), Charly
can retrieve A,Na and encrypts it with Bob’s public key K(B). He then sends
this message as the first message REQ′ of a second session between A and B.
In this step, Charly impersonates A, denoted by C(A). Bob answers to REQ′

and Charly diverts this message CHAL′ (it is by denoted C(A)). Then Charly,
with two messages CHAL and AUTH of the first session, uses A as an oracle in
order to obtain Bob’s nonce Nb.

A

C

C(A)

B

C(A)

C

A

C

C(A) B

{A, Na}K(C)

REQ
{A, Na}K(B)

REQ′

{Na, Nb}K(A)

CHAL
′

{Na, Nb}K(A)

CHAL{Nb}K(C)

AUTH {Nb}K(B)

AUTH
′

Fig. 2. A Replay attack following G. Lowe.

4 Finding an Attack on the NSPK Using Membranes

We shall describe here the specification of the Needham-Schroeder publi-key
protocol and the implantation of an attack-search procedure using rules and
membranes. For the implementation, we rely on rewriting modulo associativity
and commutativity (AC) in terms representing nested multisets (membranes).
Rewriting rules can be guarded by arbitrary conditions. This model is similar
to the chemical computations presented in [1], and we use the term “chemical
solution” to denote the content of a membrane. Examples of systems imple-
menting such models of computations are Gamma, ELAN [2], MAUDE [3],
and MGS [9]. The ingredients of this model of computation are rather sophis-
ticated but a translation into the fundamental core mechanisms of P systems
is possible, and we give in [19] some elements that support this assertion.

We present in this chapter the principles of a simple version of the attack-
search procedure. This version improves a similar analysis initially proposed
within the ELAN rewriting framework, because we use a more accurate rep-
resentation of states using nesting. The functional representation of the inter-
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leaving of actions is also a new idea. Note that another version is described
and fully detailed in [20]; it goes further by generalizing the approach to the
exploration of general state spaces and does not rely on the assumption that
attacks involve messages of bounded size.

The description of the protocol involves two different kinds of components:
entities and evolution rules. The entities are records and evolution rules are
given by rewrite rules. A system state, for which we shall also write solution,
is a finite collection of entities which are of three kinds: agents, messages
transmitted through the network, and messages components memorized by
the intruder. Several entities in a state shall react, firing an evolution rule
which transforms a system state into a successor state. The model is organized
into the following parts, detailed in the next sections:

• record definitions, used to describe the three kinds of entities (Section 4.1);
• various predicates used to select, in the set of reacting entities, a specific

entity of a given kind – an agent or a message (Section 4.1);
• rules specifying the abilities of the intruder to collect all the messages that

have been exchanged between agents and extract pertinent information
(Section 4.2);

• rules specifying the abilities of the intruder to produce fake messages from
the information gathered so far (Section 4.2);

• rules specifying the reception and sending of messages by agents: such rules
are defined as reactions between an agent and a (received) message which
fulfills some conditions (Section 4.3);

• rules implementing a state exploration procedure which halts with a predi-
cate checking whether a bad state is reached, and hence whether the search
of an attack is successful (Section 4.3).

4.1 Representing Agents, Messages, and Intruder Knowledge

The three different kinds of entities (unstructured information) found in the
system states (solutions) are represented using records (the MGS code for this
section can be found in Appendix B.1).

Agents. We shall distinguish the roles, Alice and Bob in our example, which
are programs, from the agents executing the programs, characterized by an
identifier (agent’s name), a role, and a bounded memory. In particular, there
can be several agents for one role. An agent consists of:

• an identity id (its name; several agents may have the same identity),
• two stores ni and nr to memorize the session-specific values of the nonces

Na and Nb,
• a program counter pc, which can take the value described below.

Every agent with role either Alice or Bob shall create a nonce and receive
another one during the execution of the protocol of Section 3.1. The fields
ni and nr store these two values for Alice, ni stores Na and nr stores Nb,
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and reciprocally for Bob (ni stands for nonce initial, because we can assume
that each agent initially creates the nonces before starting a session of the
protocol, and nr stands for nonce received).

The program counter pc of an agent can take the following values (these
values are arbitrary symbols and prefixed by a backquote), according to the
role: ‘REQ, ‘AUTH, and ‘FINISHED for Alice and ‘CHAL, ‘WAIT, and ‘FINISHED

for Bob. For Alice, pc = ‘REQ means that the agent is about to send the
message with the corresponding label in the protocol specified in section 3.1,
and similarly for pc = ‘AUTH (role Alice) and ‘CHAL (role Bob). For an agent
playing the role of Bob, pc = ‘WAIT means that he is waiting for the answer
of Alice to his challenge CHAL, and pc = ‘FINISHED means that the agent has
completed his session of the protocol.

Messages. Three different kinds of messages are exchanged between Alice
and Bob during the protocol. We define a predicate to recognize each kind of
message: REQ, CHAL, and AUTH. Messages are also records, and are characterized
by the kind of information that they hold. For instance, messages of type REQ

contain a field na representing the content of the message and a field kb which
is the public key used for encryption. For the sake of simplicity in our program
every public key or private key is represented by the identity of the owner.

Intruder Knowledge. The knowledge of the intruder is also represented
by records with fields name, nonce, pub, and priv. We define several pred-
icates (info name, info nonce, info pub, and info priv) for each kind of
information that the intruder will be able to reveal from the whole history of
exchanged messages: name, nonce, public key, and private key. These predi-
cates are used to determine the presence of a message of a given kind with
given information in the solution.

4.2 The Intruder Transformation Rules

The network is common to all agents and the intruder; hence the latter is able
to read and produce new messages. This behavior is implemented by the rules
presented in the two following sections (the MGS code for this section can be
found in Appendix B.2).

Reading and Analyzing Messages. In our approach, the existing messages
are read by the intruder from the current state and are put back unchanged.
Moreover, the encrypted contents of a message are added as new known in-
formation to the state if decryption is possible. More precisely, the intruder
can learn plaintext encrypted with a public key (for instance the nonce nb en-
crypted with kb in message AUTH) only if he knows the corresponding private
key.

The following three rules define the evolution of the knowledge of the
intruder, according to the messages present in the network. There is exactly
one rule for each kind of message. They will actually not generate all the
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information that the intruder can extract from collected message. However,
these transformations are sufficient to extract all the information needed to
build messages with the forging rules below. For instance, if a message m
present in the solution has type REQ, and the intruder knows the private
key associated with m.kb, then he learns the components m.na and m.a of m.
Theoretically, he also learns the pair (m.na,m.a) but storing such information
is useless since we assume that the intruder is able to build pairs arbitrarily.

m −→ m, {nonce = m.na}, {name = m.a}
where m ∈ REQ ∧ ∃k ∈ self s.t. k.priv = m.kb

m −→ m, {nonce = m.na}, {nonce = m.nb}
where m ∈ CHAL ∧ ∃k ∈ self s.t. k.priv = m.ka

m −→ m, {nonce = m.nb}
where m ∈ AUTH ∧ ∃k ∈ self s.t. k.priv = m.kb

The keyword “self” used in the rules denotes the current multiset (i.e., the
multiset from which m is chosen). The existential quantifier in the guard of
the rules checks whether some condition is satisfied by an element k in a given
multiset: such a kind of predicate is easily computed by the set of reduction
rules.

Forging Some New Messages. In the previous section, we have described
the intruder rules set which reveals information only according to already
known messages and keys. The following rule produces a new fake REQ message
from known information in the solution:

k, n,m −→ {na = m.nonce, a = n.name, kb = k.pub}

where info pub(k) ∧ info name(n) ∧ info nonce(m)

There is one such rule for the two other kinds of messages, CHAL and AUTH.
These rules are used to produce by saturation (fixed point computation) all
possible fake messages that can be forged from the known facts in a multiset.

An attack consists of revealing all possible information using the above
rules of the intruder after having forged all possible fake messages. Actually,
we will see in the following sections that a real attack always consists of the
application of the attack rules of Section 4.3 until a fixed point is reached.

4.3 Nested Multiset Rewriting to Explore the State Space

The first idea to implement the logical analysis of NSPK is to aggregate all
the entities involved into the protocol in a single multiset acting as a chemical
solution containing the agents, the messages, and the revealed information.
The agents and the intruder will react with messages to augment the solution
with new information. All information is in the solution at the same level.
An attack on the NSPK protocol consists here of finding an interleaving of
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the agents actions described below such that Bob’s nonce is revealed (the MGS
code corresponding to this section can be found in Appendix B.3).

This approach suffers from the following problem: let S be a solution and
a be an agent in a state where it might reply to two different messages m1

and m2. The two following scenarios could occur:

1. The agent replies to both messages: to m1 to give m′

1 and to m2 to give
m′

2. Here, after the agent action, S becomes S ∪m′

1 ∪m′

2. In the future
evolution of the protocol, another agent may react to both m′

1 and m′

2

leading to an incorrect situation, even where the intruder may break the
protocol and reveal the nonce.

2. The agent replies to only one of the two messages: to mi to produce m′

i.
In that case, an attack might not be found because the case where the
reply should have concerned the other message has not been considered.
The protocol analysis is therefore too weak.

The consequence is that we have to take into account the different evolu-
tions of the protocol that might occur when an agent receives more than one
message. To model such a situation, we make use of several multisets (mem-
branes) to localize the computation and to avoid the (possible) interferences.
The initial state consists of a multiset of multisets. Each element in the top
multiset (the skin in the language of P systems) is a possible state in the
protocol and represents some possible evolution, as depicted in Figure 3.
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Fig. 3. Creation of membranes.

The Agents. The behavior of each agent, at each possible pc, is described
by a set of rules. For example, the behavior of Alice with pc = ‘AUTH is to
switch to the state ‘AUTH and to produce a new message:

x, t −→ (x + {pc = ‘AUTH}), {kb = x.dest, na = x.ni, a = x.id}

where x ∈ REQ ∧ x.id = alice ∧ t = ‘OK

the operator + is the asymmetric merge of records and the results of x+{pc =
‘AUTH} is a record equal to x except for the field pc that takes the value ‘AUTH.
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The variable t matches a symbol used to inhibit or activate the rule: if the
symbol is present (e.g., t = ‘OK) then the rule can be triggered. If the symbol
‘OK is not present in the chemical solution, the rule is inhibited.

There are three additional similar rules to describe the evolution of Alice
waiting for the authentication, Bob waiting for a challenge, and Bob in the
finishing state.

Note that the messages addressed to an agent must not be removed from
the solution and are available for other rule applications.

The Initial State. The initial state for the attack search consists of a multiset
(of multisets) with only one element:

• the two agents, Alice and Bob, initialized with their respective identities,
the destination of the message for Alice, initial nonces to arbitrary integer
values, and program counter;

• intruder knowledge (public keys of all participants and its own private
key).

Looking for an Attack. In our definition of the initial state, the number of
agents is fixed and remains such. Therefore, the number of execution steps is
bounded accordingly. The problem consists of finding the correct interleaving
of Alice’s and Bob’s actions leading to a successful attack.

The basic idea is to generate all strings of bounded length made of four
symbols representing an evolution of one of the agents (see the rule set of an
agent described above). The combinatorial generation of such a string is easy
and can be done randomly. Then a rule is used to trigger the “application” of
one of the strings to an agent to make it evolve:

m, ‘alice req::s −→ m, ‘OK, s

The expression ‘alice req::s denotes a string beginning with the symbol
‘Alice req. Note that the tail s of the string is released in the solution. The
production of the triggering symbol ‘OK activates the evolution rule on m.
By adjoining a trigger to this rule, which is released by the agent evolution
rule and consumed by the rule application, we can interleave correctly the
evolution of an agent until the exhaustion of the string s.

We still look for an interleaving leading to revealing the nonce. A successful
attack is to find the nonce of Bob revealed in the chemical solution. This is
done by adding a specific rule, e.g., a rule leading to a dissolution of all
enclosing membranes.

Validation in the MGS Programming Language. To validate our propo-
sitions, we have completely implemented and validated several versions of the
logical analysis using the MGS programming language. A presentation of MGS
and the commented code can be found in the Appendix.

MGS is a research project devoted to the design and the development
of a programming language dedicated to the simulation of biological pro-



An Analysis of a Public Key Protocol with Membranes 293

cesses [9, 11]. Based on topological notions, MGS supports the notion of trans-
formation: a localized computation specified by rules. One can, for example,
define multiset rewriting rules [1] that act on a nest of multisets (i.e., mem-
branes). These rules can be used to move values from one multiset to another,
as well as to dissolve, divide, and create new multisets. So, MGS can potentially
be used to process membranes. However, we outline that the MGS project fo-
cuses on the design of a programming language rather than the development
of a well founded computational model.

5 Summary

In this chapter, we have used the membrane computing approach to describe
and analyze the NSPK protocol. This application of membrane computing
is new to the best of our knowledge. It has been shown that using our ap-
proach, the well known security hole of [16] is easily (in less than one second)
discovered by our state exploration procedure.

In the proposed version, we are searching for the correct interleaving of
the agents’ actions leading to a possible attack. Using membranes permits us
to handle correctly the fact that an agent may have to react to more than one
message, leading to more than one evolution of the state.

Nevertheless, this method is tailored for the search of an interleaving of
agents’ actions leading to the revelation of the nonce. This is possible because
we actually know that such an interleaving will lead to a successful attack. We
have proposed in [19] a more general approach where a full state space search
is done. The complete running code of the two versions has been implemented
in MGS and is detailed in [20]. The complete code is particularly simple and
readable. Moreover, it is also easy to evolve the initial analysis into a more
sophisticated one.

The approach presented here has been developed for this special protocol
and heavily relies on the nesting of membranes to localize the computation
and to avoid evolution interference, leading to more approximate analysis.
We believe that the principles of our modeling are general enough to envision
a systematic way to derive a program for searching for attacks from an ab-
stract description of the messages of a protocol given with the notations of
Section 3.1, following [14].
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Appendix A. A Brief Introduction to the MGS Language

We briefly present the MGS language in this section. We do not detail all
the features of the language but, rather, focus on the notions required to
understand the next section.

A.1 MGS as a Functional Language

MGS embeds a complete, impure, dynamically typed, strict, functional lan-
guage. We describe here only the major differences between the construc-
tions available in MGS with respect to functional languages like OCAML [15] or
HASKELL [12].

Values. Atomic values (such as integers, floats, booleans, and strings), with
their usual functions, are available. Constants are denoted with a backquote,
as in ‘REQ (reminiscent of LISP symbols). The only operations allowed on a
constant are to store it and to compare it for equality with another value.

Records (cartesian products with labels) are defined using braces: {x=0,
y=1} creates a pair with label x and y (an MGS record is similar to Pascal’s
record or C’s struct). The fields are accessible using the dot notation: let
v = {x=0, y=1} in v.x has value 0. Since records are used in MGS to define
a particular state of an entity, MGS allows the definition of predicates based
on the fields found in a record. The keyword record is used to define such
predicates:

record agent = \{id, ni, nr, pc\}

defines the predicate agent that holds only if applied to a record value that
has at least the fields id, ni, nr, and pc. Record alice, defined as record
alice = {dest} + agent, extends predicate agent with the additionally re-
quired field dest. So far, the record predicates required only have the fields to
hold. The predicate req defined as record req = {pc = ‘REQ} holds only if
its argument has a field pc with a value equal to the constant ‘REQ.
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Imperative Variables and Sequencing. Variables in a functional lan-
guages are not true variables: they refer to values and cannot be updated.
MGS has a notion of imperative variable (also called mutables) that can be
updated. The := operator allows us to define such variables. For example
imp := 0 defines imp with value 0 that can be later updated with the same
construction.

The semicolon operator ; is used to express the sequencing of expressions:
the value of f();g() is the value returned by g() where f() has been com-
puted before.

Functions. Since MGS is a functional language, it has functions as first-class
values. Functions are defined either using the construction fun, as in fun

max(x, y) = if (x > y) then x else y fi, or using the classical lambda
notation, as in \x.\y.if (x > y) then x else y fi

Computations by fixpoints are heavily used in applications like simulations
or state space explorations. MGS provides an operator to compute iterations
and fixpoints of functions. Let f be a function, then f[iter = n](x) com-
putes fn(x) and f[*](x) denotes the fixpoint of f starting from x.

Functions together with mutables and iterations allow us to define func-
tions that pass information between calls. For example, function f defined as
fun f[acc=0](x)=(acc := acc+1; x+acc) allows to define an accumulator
acc which stores a value that is incremented between each call. The value of
f[’iter = 10, acc = 0](1) is 56.

A.2 Topological Collections and Their Transformations

A distinctive feature of the MGS language is its handling of entities struc-
tured by abstract topologies using transformations [10]. A set of entities or-
ganized by an abstract topology is called a topological collection. Topological
means here that each collection type defines a neighborhood relation inducing
a notion of subcollection. A subcollection B of a collection A is a subset of
connected elements of A, inheriting its organization from A.

Collection Types. Many different predefined and user-defined collection
types are available in MGS. We won’t describe them here since sets, multi-
sets, and sequences are the only collection type used in this chapter.

For any collection type T, the corresponding empty collection is written
():T. The name of a collection type is also a predicate used to test if a value
is of the type: T(v) holds only if v is of type T. Each collection type can be
subtyped. The type declaration collection U = T introduces a new collec-
tion type U which is a subtype of T. The new type U shares the same topology
as T. However, a value of type U can be distinguished from a value of type T

using the U predicate (i.e., the subtyping relation implies that U(u) ⇒ T(u)
for any value u, but not the reverse). Elements in a collection can be of any
type, including collections.

Operations on Collections. The join of two collections C1 and C2 (writ-
ten with a comma: C1,C2) is the main operation on collections. The comma
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operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression
1, 1+1, 2+1, ():set builds the set with the three elements 1, 2, and 3, while
the expression 1, 1+1, 2+1, ():bag makes a multiset with the same three el-
ements.

Transformations. The global transformation of a topological collection C
consists of the parallel application of a set of local transformations. A local
transformation is specified by a rewriting rule r that specifies the replacement
of a subcollection by another one. The application of a rewriting rule β ⇒
f(β, . . . ) to a collection A:

1. selects a subcollection B of A whose elements match the pattern β,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C in place of B into A.

One should pay attention to the fact that, due to the parallel application strat-
egy of rules, all distinct instances Bi of the subcollections matched by the β
pattern are “simultaneously replaced” by the f(Bi). This is very different from
the evaluation strategies followed by classical rewriting tools like MAUDE [3],
ELAN [2], Murϕ [6], MSR [4], etc.

The MGS experimental programming language implements the idea of
transformations of a topological collection into the framework of a simple
dynamically typed functional language. Collections are new kinds of values
and transformations are functions acting on collections and defined by a spe-
cific syntax using rules. Transformations (like functions) are first-class values
and can be passed as arguments or returned as the result of an application.

Subcollection Patterns. A transformation is defined by a set of rules (listed
between braces). A pattern β that appears on the left hand side of a rule is
an expression used to select a subcollection to be replaced. Several operators
are available; we will review here only a few of them:

• Literal: a literal value matches an element with the same value. For ex-
ample, 123 matches an element with the integer value 123.

• Variable: a pattern variable a matches exactly one element. The variable
a can then occur elsewhere in the rule and denotes the value of the matched
element. The identifier of a pattern variable can be used only once in a
pattern. To match an element without giving it a name, an underscore, ,
can be used.

• Alias: the pattern p as X associates the variable X with the value matched
by the pattern p. X is a regular variable that can be used as previously
described.

• Neighbor: the pattern b , p matches a subcollection composed of an ele-
ment matched by b neighbor of a subcollection matched by p.

• Guard: p/exp matches a subcollection matched by p such that the pred-
icate exp hold. For instance, x,y / y > x matches two neighbor elements
such that the second one is greater than the first.
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• Repetition: p* matches a subcollection made of a (possibly empty) rep-
etition of subcollections matched by p. If p is a pattern variable, then its
value refers to the sequence of matched elements, and not to one of the in-
dividual values. For example, 3+ matches a nonempty subcollection made
of only 3s.

MGS and Membrane Computing. The MGS language enables a kind of
membrane computing. It embeds the rewriting of multisets (or sets) in the
following way: in a multiset, an element is susceptible to interacting with
any other element, so the abstract topology of a multiset is the topology of a
complete connected graph, and the neighbors of an element are all the other el-
ements in the multiset. Then, a pattern β can select an arbitrary sub-multiset,
and a multiset rewriting rule is simply a local transformation in this topology.

A.3 Example: Computing All n-Tuples in a Set

Let S be a set of values. To compute all the n-tuples one can use the
transformation:

trans n_tuple[acc, n] = {

(_* as c) / size(c) == n / (acc := c::acc; false) => !!(0);

_ => return(acc)

}

In transformation n tuple, parameters acc and n are mutables whose
definitions are local to the transformation. They are set at the first call of
the transformation. Applied to a collection C, the pattern of the first rule
(( * as X) / size(X) == n) matches a subcollection c of C of size n such
that all elements of c are neighbors (with respect to the topology induced by
C). Once c is found, the predicate (acc := c::acc; false) is calculated:
collection c is added to the accumulator (:: is the concatenation of a value to a
collection) and the value false is returned. Since the predicate does not hold,
the right hand side of the rule is not evaluated (the expression !!(0) aborts
the program) and the rule is tried against another instance, storing each time
the solution of the matching into the accumulator. Once all the possibilities
have been tried and failed, the second rule is tried. That rule succeeds in
matching anything and returns the value of the accumulator. Transformation
n tuple[acc=set:(), n=2]((3,4,5,6,set:()));; computes all the pairs

((3, 4):’seq, (3, 5):’seq, (3, 6):’seq, (4, 3):’seq, (4, 5):’seq,

(4, 6):’seq, (5, 3):’seq, (5, 4):’seq, (5, 6):’seq, (6, 3):’seq,

(6, 4):’seq, (6, 5):’seq):’set

where (3, 4):’seq is a pair holding the two integer values.

Appendix B. MGS Code for the Description of the Attack

We give in the following sections the MGS code that implements the search
for an attack that is described in Section 4.
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B.1 Representing Agents, Messages and Intruder Knowledge

The code presented in this section implements the data structures defined
in Section 4.1.

Agents. One set of records is used to define agents, defined as:

record agent = { id, ni, nr, pc};;

record alice = { dest } + agent;;

record bob = agent;;

Some records for the possible agent pc are defined as follows:

record req = { pc = ‘REQ };;

record chal = { pc = ‘CHAL };;

record auth = { pc = ‘AUTH };;

record wait = { pc = ‘WAIT };;

record finished = { pc = ‘FINISHED };;

Messages. A predicate is defined for each kind of message:

record messageReq = { na, a, kb };;

record messageChal = { na, nb, ka };;

record messageAuth = { nb, kb };;

Intruder Knowledge. Finally, we define a predicate for each kind of in-
formation that the intruder will be able to reveal from the whole history of
exchanged messages:

record info_name = { name };;

record info_nonce = { nonce };;

record info_pub = { pub };;

record info_priv = { priv };;

Predicates are defined for each kind of message to determine the presence
of a message of a given kind in the solution:

fun messageReqCond(a, m) = messageReq(m) & (m.kb == a.id);;

fun messageChalCond(a, m) = messageChal(m) & (m.ka == a.id)

& (m.na == a.ni);;

fun messageAuthCond(a, m) = messageAuth(m) & (m.kb == a.id)

& (m.nb == a.ni);;

fun PmessageReq(b, all) = exists(messageReqCond(b), all);;

fun PmessageChal(a, all) = exists(messageChalCond(a), all);;

fun PmessageAuth(a, all) = exists(messageChalCond(a), all);;

B.2 The Intruder Transformation Rules

The intruder’s behavior described in Section 4.2 is defined here in terms
of MGS transformations.

Reading and Analyzing Messages. The following transformation rules de-
fine the evolution of the knowledge of the intruder, according to the messages
present in the network:
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trans intruder = {

m / messageReq(m) & exists((\k.(info_priv(k)

& (k.priv == m.kb))), neighbors(m))

=> m, {nonce = m.na}, {name = m.a};

m / messageChal(m) & exists((\k.(info_priv(k)

& (k.priv == m.ka))), neighbors(m))

=> m, {nonce = m.na}, {nonce = m.nb};

m / messageAuth(m) & exists((\k.(info_priv(k)

& (k.priv == m.kb))), neighbors(m))

=> m, {nonce = m.nb}

};;

The function neighbors used in the transformation is a special form that
returns all the neighbors of the element denoted by a pattern variable.

Forging Some New Messages. In the previous section, we have described
the intruder transformation which reveals only information according to al-
ready known messages and keys. The following transformation produces new
fake messages from information known in the solution. There is one transfor-
mation for each kind of message:

trans forge_req[acc = set:()] =

{

((k:info_pub), (n:info_name), (m:info_nonce)) as X

/ acc := {na = m.nonce, a = n.name, kb = k.pub},acc; false

=> !!(0);

_ => return(acc)

};;

trans forge_chal[acc = set:()] =

{

((k:info_pub), (n:info_nonce), (m:info_nonce)) as X

/ acc := {na=m.nonce, nb=n.nonce, ka=k.pub},

{nb=m.nonce, na=n.nonce, ka=k.pub},acc; false

=> !!(0);

_ => return(acc)

};;

trans forge_auth[acc = set:()] =

{

((k:info_pub), (m:info_nonce)) as X

/ acc := {nb=m.nonce, kb=k.pub}, acc; false

=> !!(0);

_ => return(acc)

};;

fun forge(s) =

s, forge_req[acc=set:()](s), forge_chal[acc=set:()](s),

forge_auth[acc=set:()](s);;

fun attack(s) = intruder(forge(s));;

Consider the first transformation; one should remark that, since the record
made of info pub, info name, and info nonce might not be unique, we have
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to use the same kind of procedure as that described in Section A.3 to produce
all matching triples. This way, we produce all possible fake messages knowing
public keys, names of agents involved in the sessions, and revealed nonces.

Function forge applied to the solution s adds to the original solution the
result of the application of the three forge transformations.

An attack, represented by attack, consists in the revealing of all possible
information by the intruder after having forged all possible fake messages.

B.3 Nested Multiset Rewriting

A new collection type, membrane, is defined which derives from the collec-
tion type seq (membrane is then a sequence with a different name). An empty
collection of that type is ():membrane.

collection membrane = seq;;

The Agents. The transformations describing the behavior of each agent are
described below:

trans alice_req = {

x / (req(x) & alice(x)) => (x + {pc = ‘AUTH}),

{kb = x.dest, na = x.ni, a = x.id}

};;

trans bob_chal = {

y / bob(y) & chal(y) & PmessageReq(y, neighbors(y))

=> let all_messages = filter(messageReqCond(y), neighbors(y))

in return(map((\m.((y + {pc = ‘WAIT, nr = m.na}),

{ka = m.a, na = m.na, nb = y.ni},

setify(neighbors(y)))), all_messages))

};;

trans alice_auth = {

x / auth(x) & alice(x) & PmessageChal(x, neighbors(x))

=> let all_messages = filter(messageChalCond(x), neighbors(x))

in return(map((\m.((x + {pc = ‘FINISHED}),

{kb = x.dest, nb = m.nb},

setify(neighbors(x)))), all_messages))

};;

trans bob_finish = {

y / bob(y) & wait(y) & PmessageAuth(y, neighbors(y))

=> let all_messages = filter(messageAuthCond(y), neighbors(y))

in return(map((\m.((y + {pc = ‘FINISHED}),

setify(neighbors(y)))),

all_messages))

};;

Notice that the messages addressed to Alice are not removed from the
solution. Since they do not appear in the pattern part of the rule, they are
not matched and therefore not “consumed” from the solution.

Care has been taken in the previous transformations to generate the correct
membrane structure (setify(neighbors(y)) for the argument in the map
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of the right hand side of each transformation; setify computes the set of
elements of its collection argument and the function neighbors returns all
the neighbors of the element denoted by a pattern variable).

Revealing a Successful Attack. A successful attack is to find in the chem-
ical solution the nonce of Bob revealed. Since we have a membrane of sets,
revealing a successful attack consists of looking in each set for the nonce:

fun isbroken(x) = member({nonce = 1}, x);;

fun broken(x) = exists(isbroken, x);;

The Initial State. The initial state is a membrane of sets with only one set:

initial := ({id = "alice", ni = 0, nr, pc = ‘REQ, dest = "charly",},

{id = "bob", ni = 1, nr, pc = ‘CHAL},

{priv = "charly"}, {pub = "charly"}, {pub = "alice"},

{pub = "bob"}, set:()

):: membrane:();;

Note that the nr field is not set in the definitions: in this case, it is defined
with an unspecified value (and will later be set to a relevant value once a
message is received).

Looking for an Attack. As stated in Section 4.3, the problem consists
of finding the correct interleaving of Alice’s and Bob’s actions leading to
a successful attack. Transformation breaks succeeds if such an interleav-
ing exists. It is applied on functions, which is the set of the transforma-
tions describing the agents’ behavior. The MGS pattern expression ( *) as F

will match all possible permutations of the elements of functions. For the
sake of explanation, let F be the sequence [f1, . . . , fn] of one possible permu-
tation. The guard checks whether broken holds for an attack on the state
attack∗ ◦ f1 ◦ · · · ◦ attack

∗ ◦ fn(initial).
As for the search of an attack, we still look for an interleaving leading to

the revealing of the nonce. We now have to map and flatten the attack that
follows an action of one of the agents:

fun fmap(f, e) = flatten(map(f, e));;

trans break = {

(_*) as F / broken(fold((\fn.\s.(fmap(attack[*], fmap(fn,s)))),

initial, F))

=> return(true)

};;

functions := alice_req, alice_auth, bob_chal, bob_finish, set:();;

successful := break(functions);;

The search for an attack succeeds in less than a second on a AMD-1.4Ghz

Linux Debian/Woody computer, and reveals that the correct interleaving of
functions is, as expected, bob finish ◦ alice auth ◦ bob chal ◦ alice req.
The implemented code and the MGS interpreter is available from mgs.lami.

univ-evry.fr.
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Summary. A new type of approximate algorithm for optimization problems, called

the membrane algorithm, is proposed. A membrane algorithm consists of several re-

gions separated by means of membranes; in each region we place a few tentative

solutions of the optimization problem and a subalgorithm. The subalgorithms im-

prove the tentative solutions simultaneously. The best and worst solutions in a region

are sent to adjacent inner and outer regions, respectively. By repeating this process,

a good solution will appear in the innermost region. The algorithm terminates if a

termination condition is satisfied. A simple condition is the number of iterations,

while a little more sophisticated condition becomes true if the good solution is not

changed during a predetermined number of iterations. Computer experiments show

that the membrane algorithms solve the traveling salesman problem better than the

simulated annealing algorithm.

1 Introduction

Studies on approximate algorithms for NP-complete problems [1, 2, 9] are a
very important issue in computer science, because:

• There are thousands of NP-complete problems.
• Almost all NP-complete problems correspond to practical problems.
• There are very few (I think no) expectations for P = NP, that is, for

strictly solving NP-complete problems in deterministic polynomial time.

Recently, we have suggested a new type of approximate algorithms for
solving NP-complete optimization problems [4, 5]. The algorithms use the
P system paradigm [7]; that is why they are called membrane algorithms.
A membrane algorithm borrows nested membrane structures, rules in mem-
brane separated regions, transporting mechanisms through membranes, and
dynamic structures of rules and membranes from P systems, and uses all
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these membrane computing ingredients to solve NP-complete optimization
problems approximately.

In the next section, the outline of membrane algorithms is explained. De-
tails about a membrane algorithm constructed in order to solve the traveling
salesman problem approximately are given in Section 3. The section also de-
scribes results of computer experiments. Improved membrane algorithms are
mentioned in Section 4.

2 Outline of Membrane Algorithms

Here we explain the new type of algorithm, called membrane algorithm.

Outermost region

innermost region

Fig. 1. Membrane structure of the suggested algorithm.

A membrane algorithm consists of three different kinds of components:

1. A number of regions which are separated by nested membranes – see
Figure 1.

2. For every region, a subalgorithm and a few tentative solutions of the
optimization problem to be solved.

3. Solution transporting mechanisms between adjacent regions.

After initial settings, the membrane algorithm works as follows:

1. In every region, the solutions are updated by the subalgorithm placed in
the region, simultaneously.

2. In every region, the best and worst solutions, with respect to the opti-
mization criterion, are sent to the adjacent inner and outer regions, re-
spectively.
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3. The membrane algorithm repeats updating and transporting solutions
until a termination condition is satisfied. A simple termination condition
is the number of iterations, while a little more sophisticated condition
becomes true if the good solution is not changed during a predetermined
number of steps.

The best solution in the innermost region is the output of the algorithm.
A membrane algorithm can have a number of subalgorithms which can be

any approximate algorithm for optimization problems, for example, a genetic
algorithm, tabu search, simulated annealing, local search, etc. The membrane
algorithm is expected to be able to escape from local minima by using a sub-
algorithm which enhances a random search in the outer regions. On the other
hand, the membrane algorithm can improve good solutions in the inner regions
by a subalgorithm which enhances the local search. So, assigning appropriate
subalgorithms for a given problem, the performance of membrane algorithms
will be excellent.

Because the subalgorithms are separated by membranes and communi-
cations occur only between adjacent regions, a membrane algorithm will be
easily implemented in parallel, distributed, or grid computing systems. This
is the second important advantage of this approach.

3 First Experiment: Solving the Traveling Salesman
Problem

In this section we fix the components of a membrane algorithm to solve the
traveling salesman problem (TSP for short). Then, we implement and exper-
iment with the algorithm on a computer.

3.1 Details of the Algorithm

Let m be the number of membranes, let regions 0 and m−1 be the innermost
and outermost regions, respectively.

An instance of the TSP with n nodes contains n pairs of real numbers
(xi, yi), for i = 0, 1, . . . , n − 1, which correspond to points in the two di-
mensional space. The distance d(vi, vj) between two nodes vi = (xi, yi) and

vj = (xj , yj) is the Euclidean distance d(vi, vj) =
√

(xi − xj)2 + (yi − yj)2. A
solution of the instance is a list of nodes (v0, v1, . . . , vn−1) in which vi 6= vj for
every i 6= j. The value of a solution v = (v0, v1, . . . , vn−1) denoted by W (v)
is given by

W (v) =

n−2
∑

i=0

d(vi, vi+1) + d(vn−1, v0).

For two solutions u and v, v is better than u if W (v) < W (u). The solution
which has the minimum value among all possible solutions is said to be the
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strict solution of the instance. A solution which has a value close to the strict
solution is called an approximate solution.

The algorithm we propose has one tentative solution in region 0 and two
solutions in all regions from 1 to m− 1.

We use a tabu search as the subalgorithm in the innermost region, region
0. The tabu search searches a neighbor of the tentative solution by exchanging
two nodes in the solution. In order to prevent a node from appearing in the
same solution twice, the tabu search has a tabulist which consists of nodes
already exchanged. Nodes in the tabulist are not exchanged again. The tabu
search resets the tentative solution and the tabulist if one of the following
three conditions occurs:

1. The value of the neighboring solution is less than that of the tentative
solution. The neighboring solution becomes the new tentative solution.

2. The value of the best solution in region 1 is less than that of the tentative
solution. The best solution in region 1 becomes the new tentative solution.

3. The neighbor search exceeds a predetermined turns (in this case n
5 ). The

tentative solution remains unchanged, and only the tabulist is reset.

In case 3, no improvement occurs; however, the tabu search tries to search
other neighbors, since there are many unsearched neighbors.

The tentative solutions in regions 1 to m − 1 (there are two solutions in
each region) are improved by a subalgorithm briefly described as follows:

1. If the two solutions have the same value, then a part of one solution (which
is selected probabilisticaly) is reversed.

2. Recombinate the two solutions and produce two new solutions.
3. Modify the two new solutions by point mutations. In the ith region, a

mutation occurs with probability i
m

.

Obviously the subalgorithm described above resembles genetic algorithms.
But the subalgorithm always recombinates the two solutions in a region while
genetic algorithms randomly select solutions to be recombinated (from a large
population of candidate solutions). If the two solutions in a region are identi-
cal, then the recombination produces no new solutions. Step 1 avoids this case
and introduces a new solution using the reverse operation, which is a kind of
mutation.

The overall algorithm looks as follows:

1. Consider an instance of the TSP.
2. Randomly construct one tentative solution for region 0 and two tentative

solutions for every region from 1 to m− 1.
3. Repeat 3.1 to 3.3 d times (d is given as a parameter).

3.1 Modify tentative solutions simultaneously in each region using the sub-
algorithm associated with the region.

3.2 For each region i (1 ≤ i ≤ m− 2), send the best solution in the region
(old solutions and modified solutions) to region i − 1 and the worst
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Fig. 2. An example obtained by a membrane algorithm. The instance is a benchmark

problem of TSP, called eil51. The value of this solution is 429, while the strict value

is 426.

solution to region i + 1. (In region 0, send the worst solution to region
1, and in region m− 1, send the best solution to region m− 2.)

3.3 For each region 1 to m− 1 remove all solutions but the best two.
4. Output the tentative solution in region 0 as the output of the algorithm.

In the above algorithm, steps 3.2 and 3.3 correspond to solution transporting
mechanisms between adjacent regions.

3.2 Computer Experiments

We have implemented the algorithm using the Java programming language.
By using Java, modifications of the algorithm have been easily tested on a
computer. For example, we have implemented several recombination methods
and have found that edge exchange recombination (EXX) [3] exhibits the best
performance when used as subalgorithm.

Figure 2 shows an example of a solution provided by the computer exper-
iment.
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Table 1. Results of the membrane algorithm and simulated annealing (SA) for the

benchmark problem eil51 (51 nodes). The membrane algorithm repeats step 3

40,000 times. The number of trials of the membrane algorithm is 20. Membranes

2, 10, 30, 50, and 70 stand for the algorithms with 2, 10, 30, 50, and 70 regions,

respectively.

Algorithm Membrane SA

2 10 30 50 70

Best 440 437 432 429 429 430

Average 522 449 441 435 434 438

Worst 786 466 451 444 443 445

Table 2. Results for benchmark problem kroA100 (100 nodes). 100000 iterations

and 20 trials.

Algorithm Membrane SA

2 10 30 50 70 100

Best 23564 21776 21770 21651 21544 21299 21369

Average 34601 23195 22878 22590 22275 21941 21763

Worst 82756 24862 23940 24531 23569 22954 22564

Tables 1 and 2 indicate results of the program for the TSP benchmark
problem eil511 and kroA1002 from TSPLIB [8]. Results of simulated annealing
from [10] are also shown in the tables. From Tables 1 and 2, we can observe
that the membrane algorithm gets slightly better results for eil51 and slightly
worse results for kroA100 than the simulated annealing. Since the differences
are very small, we may conclude that the membrane algorithm is as good
as the simulated annealing. The more membranes a membrane algorithm has,
the better the results obtained. Of course, the computation time is proportinal
to the number of membranes. But it seems that the “number of membrane
effect” will be saturated with 50 to 70 membranes for the eil51 problem. It
is an issue for future research to find how many membranes give the best
approximation for the kroA100 problem.

Figure 3 shows the changes of the average value of solutions for the
kroA100 problem solved by a membrane algorithm with 50 membranes. One
can see that the algorithm converges to remarkably good solutions in a few
steps, about 2,000 to 3,000 steps.

1
The value of the strict solution is 426.

2
The value of the strict solution is 21,282.



Membrane Algorithms for NP-Complete Optimization Problems 30

Fig. 3. Changes of the average value of solutions for the kroA100 problem solved

by a membrane algorithm with 50 membranes.

4 Improved Membrane Algorithms

In this section we discuss some improved membrane algorithms. These im-
provements are performed by incorporating the concepts of tissue P systems
and of P systems with a dynamic membrane structure.

4.1 Compound Membrane Algorithms

First we introduce compound membrane algorithms, which have two phases
(Figure 4). In the first phase, a number of membrane algorithms produce
good solutions from randomly generated initial solutions. The good solutions,
in turn, become the initial solutions of the second phase, and in this way a
better solution is obtained.

We examine a compound membrane algorithm with the following param-
eters:

Membrane Algorithms for NP-Complete Optimization Problems 309
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Fig. 4. A compound membrane algorithm.

• The number of membrane algorithms in the first phase is 100.
• All membrane algorithms have 50 membranes.
• Each membrane algorithm in the first phase terminates if the best solution

does not improve during 500 iterations3.
• The membrane algorithm in the second phase terminates if the best solu-

tion does not improve in 5,000 iterations3.

Table 3. Results of the compound membrane algorithm. The number of trials of

the compound and simple membrane algorithms is 20.

eil51 kroA100

compound membrane SA compound membrane SA

70 100

best 429 429 430 21316 21299 21369

average 432 434 438 21607 21941 21763

worst 438 443 445 21816 22954 22564

3
These numbers are selected according to the observation that a membrane algo-

rithm converges fast (Figure 3).
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The results of computer experiments with the compound membrane al-
gorithm are shown in Table 3. We can see that the compound membrane
algorithm always outputs almost strict solutions.

On a single processor, the computation time of the compound membrane
algorithm is, as expected, much longer than that of the simple membrane
algorithm. However, because the membrane algorithms in the first phase work
completely independent, the compound membrane algorithm will easily be
implemented on a distributed computing system, and the computation time
will then be only twice as long as that of a simple membrane algorithm.

4.2 Shrink Membrane Algorithms

We consider that the good results of the compound membrane algorithm come
from:

1. The large number of random initial solutions that are used. Indeed, there
are

99× 100 = 9, 900

initial solutions.
2. The first phase selects “good seeds” for good solutions from the initial

solutions.
3. The second phase generates very good solutions by recombining the “good

seeds” obtained in the first phase.

However, it may be ineffective to use the same membrane algorithm in the first
and second phases. That is why we propose a shrink membrane algorithm by
incorporating dynamic membrane structures, as customary in the P systems
area.

A shrink membrane algorithm also consists of two phases. Its first phase
starts with five membranes and GA type subalgorithms in all regions. If the
best solution in region 0 does not change during 100n iterations (where n is
the size of the instance, i.e., the number of nodes), then the number of mem-
branes becomes two with tabu search in region 0 and GA type subalgorithm
in region 1. The two regions have the same solution, which is the best solution
obtained so far. Then the algorithm improves solutions until the solution in
region 0 does not change during 300n iterations.

The second phase of the shrink membrane algorithm is identical to that
of the compound membrane algorithm, but the computation terminates if the
best solution does not change during 100n iterations.

Figure 5 and Table 4 illustrate the flow and parameters of the shrink
membrane algorithm.

Table 5 shows results of the shrink membrane algorithm. The experiments
are done on a Sun Fire V210 computer with one 1 GHz UltraSPARC IIIi
processor, 1.5 GB main memory, Solaris 9 OS, and Version 1.4.1 Java virtual
machine.
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Fig. 5. A shrink membrane algorithm.

Table 4. Parameters of the shrink membrane algorithm used in the computer ex-

periment.

Phase number of subalgorithms terminate conditions

algorithms membranes unchange during

1–1 100 5 GA type only 100n

1–2 100 2 GA type and 300n

tabu search

2 1 50 GA type and 100n

tabu search

We can see that the shrink membrane algorithm obtains better approxi-
mate solutions than the compound membrane algorithm. Because the differ-
ences are very small and the number of trials is not very large, there might be
no meaningful differences between the shrink and compound strategies. We,
however, stress that computation times of shrink algorithms are much shorter
than those of compound algorithms. The speedup of computations should be
a consequence of using dynamic membrane structures in the shrink membrane
algorithm; it starts with a relatively small number of regions and GA type
subalgorithms, then “shrinks” to only two membranes and does tabu search.
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Table 5. Results of the shrink membrane algorithm. We perform 20 trials.

eil51 kroA100

shrink compound shrink compound

best 429 429 21299 21316

average 430 432 21504 21607

worst 433 438 21750 21816

average computation

time (second) 748 1357 4312 7295

These processes can produce sufficiently “good seeds” for the second phase,
in an efficient way.

5 Conclusion

We have proposed and implemented a new algorithm, called the membrane
algorithm, for solving NP-complete optimization problems. Computer exper-
iments have shown that the membrane algorithms get as good approximate
solutions for the TSP as the simulated annealing algorithm. The convergence
of the membrane algorithm is rather fast. Improved membrane algorithms,
in the form of compound membrane algorithms and shrink membrane algo-
rithms, always give almost strict solutions to the TSP.

There are many possibilities for improving membrane algorithms: using
different subalgorithms, different variable structures, and different termina-
tion conditions, considering further P systems ingredients, and so on. It is
also interesting to consider membrane algorithms solving other NP-complete
optimization problems.

All programs used in the computer experiments are downloadable from
the Website [6].
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Summary. In this chapter we present a general framework to provide efficient
solutions to decision problems through families of cell-like membrane systems con-
structed in a semi-uniform way (associating with each instance of the problem one
P system solving it) or a uniform way (all instances of a decision problem having
the same size are processed by the same system). We also show a brief compendium
of efficient semi-uniform and uniform solutions to hard problems in these systems,
and we explicitly describe some of these solutions.

1 Introduction

Many interesting problems of the real world are presumably intractable (unless
P = NP) and hence it is not possible to obtain algorithmic solutions when
we address large instances of those problems on an electronic computer.

From this point of view, membrane systems have two attractive features:
they are inherently parallel and nondeterministic. Can the parallelism and
nondeterminism of P systems be used to solve hard problems in feasible time?
The answer is yes, but we must point out two facts. On the one hand, we have
to deal with the nondeterminism in such a way that the solutions obtained
by using these devices are algorithmic solutions in the classical sense, that
is, the answers of the computations of the system must be reliable. On the
other hand, the drastic decrease of the execution time from exponential to
polynomial is not achieved for free, but with the use of an exponential amount
of space, although this space is created in polynomial time.

In this chapter we present the theoretical requirements for a P system to
provide an algorithmic solution to an abstract decision problem (a precise
definition of the latter is given in Section 2). First, all computations of the
system must halt, providing a positive or negative answer to the problem
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(i.e., for a particular instance of it). Second, we impose that the systems be
confluent. This is a generalization of the notion of determinism for which we
require all possible computations to provide the same answer. This way we do
not obtain a contradictory result. In Section 3, P systems verifying these two
properties are called recognizer systems.

It is important to note that all the feasible solutions to hard problems
obtained by means of these biologically inspired devices so far presented do not
use a single P system, but a family of systems. However, there are significative
differences between those solutions, dividing them in two groups: the semi-
uniform solutions, which associate with each instance of the problem one
P system solving it, and the uniform solutions, which associate with each
possible size of the instances of the problem one P system that can solve all
instances of that size. A formal definition of these two concepts can be found
in Sections 4 and 5.

Another possible classification can be considered with respect to the exis-
tence or not in the system of a membrane where the input data is introduced
before the computation starts. Usually, the semi-uniform solutions are per-
formed by P systems without input, whereas the uniform solutions are per-
formed by P systems with input. In Section 4 we present a compendium of
known semi-uniform solutions to hard problems by P systems without input,
and a detailed description of two of these solutions: one to the Satisfiability
Problem and the other to the Hamiltonian Path Problem. Finally, in Section
5 we do the same for known uniform solutions to hard problems by P sys-
tems with input, detailing the ones corresponding to the Decision Knapsack
Problem (0/1) and to the Common Algorithmic Decision Problem.

2 Abstract Problems

Membrane systems provide devices with the ability to solve problems. But
these machines are equipped only with tools able to handle inputs and outputs
that are multisets of symbol objects. Hence, we are forced to treat these
problems as collections of multisets.

In general we define an abstract problem X to be a pair X = (IX , SX)
where IX is a language over a finite alphabet, whose elements are called in-
stances of the problem, SX is a function whose domain is IX , and for any
instance i ∈ IX , the set SX(i) is finite (the elements of this set are called
candidate solutions). Observe that the set of instances of an abstract problem
is a finite or enumerable set.

As an example, consider the problem MAX-CLIQUE of finding a largest
clique in a given unidirected graph. Recall that a clique in a graph is a set
of vertices such that their each pair is connected by an edge. An instance
of MAX-CLIQUE is an undirected graph, and a candidate solution is a set
of vertices. An exact solution will be a set of vertices which is a clique with
the maximal number of vertices. The problem MAX-CLIQUE itself is the
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relation that associates each undirected graph with each largest cliques in the
graph (an exact solution). Since largest cliques in an uniderected graph are
not necessarily unique, a given problem instance may have more than one
exact solution; that is, the binary relation associated with the problem is not
necessarily univocal.

In this chapter we will work only with decision problems, that is, abstracts
problems that require either a yes or a no answer. Formally, a decision problem
X is an abstract problem (IX , SX) such that SX is a total boolean function
(that is, a predicate) over IX .

For example, the following is a decision version of the problem CLIQUE:
given an undirected graph G and a natural number k, determine whether or
not G has a clique of size at least k. An instance for CLIQUE is a pair (G, k)
where G is an undirected graph and k is a natural number, and a candidate
solution is 1 (yes) or 0 (no). If i = (G, k) is an instance of this problem, then
SCLIQUE(i) = 1 (yes) if there exists a clique in G of size at least k, and
SCLIQUE(i) = 0 (no) otherwise.

There exists a natural correspondence between languages and decision
problems in the following way: each language L over an alphabet Σ has a
decision problem, XL = (IXL , SXL), associated with it, where IXL = Σ and
SXL = {(x, 1) | x ∈ L}∪{(x, 0) | x /∈ L}; reciprocally, given a decision problem
X = (IX , SX), the language LX over IX corresponding to it is defined as
LX = {a ∈ IX | SX(a) = 1}.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ. If M is a deterministic
device then we say that M recognizes or decides L whenever, for any string a
over Σ, if a ∈ L then the answer of M on input a is yes, and no otherwise.
If M is a nondeterministic Turing machine, then we say that M recognizes or
decides L if the following is true: for any string a over Σ, a ∈ L if and only
if there exists a computation of M with input a such that the answer is yes.
That is, an input string a is accepted if there is some accepting computation
of M on input a.

Notice the difference in the definition of acceptance by deterministic and
nondeterministic Turing machines. An input string a is accepted by a deter-
ministic Turing machine M if the computation of M on input a halts and
answers yes. A nondeterministic Turing machine M accepts a string a if there
exists some computation of M on input a answering yes; that is, there exists
a sequence of nondeterministic choices that results in yes. In this case, it is
possible that we accept a string but that there exists another computation
with the same input that either halts and answers no, or does not halt.

In some sense, we can state that nondeterministic devices do not properly
capture the intuitive idea underlying the concept of algorithm, because the
result of such a machine on an input is not reliable, since the answer of the
device is not always the same.

In the context of computability theory, we consider a problem X to be
solved when we have a general method (described in a model of computation)
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that works for any instance of the problem. From a practical point of view,
such methods run only over a finite set of instances whose cardinality depends
on the available resources.

We say that a Turing machine M solves a decision problem X if M rec-
ognizes the language associated with X ; that is, for any instance a of the
problem: (a) in the deterministic case, the machine (with input a) outputs
yes if the answer of the problem is yes, and outputs no otherwise, and (b) in
the nondeterministic case, some computation of the machine (with input a)
outputs yes if the answer of the problem is yes.

As for when the instances of abstract problems are strings, we can consider
their size in a natural manner: the size of an instance is the length of the string.
Then, how do the resources required to execute a method increase according
to the size of the instance? This is a fundamental question in computational
complexity theory.

Let M be a deterministic Turing machine. Let R be a resource used by
the device (for example, the number of steps executed before the machine
halts, the time of execution). We consider a function fR mapping nonnegative
integers to nonnegative integers defined as follows: fR(n) is the maximum,
over all instances a of size n, of the amount of resource R used when the
device M is executed with input a. For example, if R is the time of execution,
then we say that M operates in time fR(n); if fR turns to be a polynomial
function, then we say that M works in polynomial time.

3 Recognizer P Systems

In this chapter we use membrane computing as a framework to address the
resolution of decision problems; that is why we consider P systems as recog-
nizer devices. Since P systems work in a nondeterministic manner, we need to
adapt the usual definition of the processes of acceptance in nondeterministic
Turing machines.

In order to accept or reject an input string/multiset it should be enough
to read the answer of any computation of the system. Hence it is necessary
to require a condition of confluence in the following sense: every computation
of the system is a halting computation, and (on the same input, if any) all
computations have the same output.

Definition 1. A recognizer P system is a P system with external output such
that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either some object yes or some

object no (but not both) must have been released into the environment, and
only in the last step of the computation.



Computationally Hard Problems Addressed Through P Systems 319

For recognizer P systems, we say that a computation C is an accepting com-
putation (or rejecting computation) if the object yes (or no) appears in the
external environment associated with the corresponding halting configuration
of C. Hence, these devices send to the environment an accepting or rejecting
answer at the end of their computations. Therefore, if we want these kinds of
systems to properly solve decision problems, we have to require all responses
to be consistent, in the sense that the system must always give the same
answer.

4 Recognizer P Systems Without Input

The first results about solvability of NP-complete problems in polynomial
(even linear) time by membrane systems were given by Gh. Păun [24], C.
Zandron et al. [40], S.N. Krishna et al. [10], and A. Obtulowicz [15] in the
framework of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the
problem.

This method for solving problems provides a specific algorithmic solution,
in the following sense: if we wanted to apply such a method to some decision
problem then a system should be constructed for every instance of the prob-
lem. However, the construction is done in polynomial time, which prevents
the solving of the problem during the “programming” phase.

Now, we formalize these ideas in the following definition.

Definition 2. Let X = (IX , θX) be a decision problem. We say that X is solv-
able in polynomial time by a family of recognizer membrane systems without
input Π = (Π(w))w∈IX if the following are true:

• The family Π is “Turing polynomially uniform”; that is, there exists a
deterministic Turing machine which, in polynomial time, constructs the
system Π(w) starting from the instance w ∈ IX .

• The family Π is polynomially bounded; that is, there exists a polynomial
function p(n) such that for each w ∈ IX , every computation of Π(w) halts
in at most p(|w|) steps.

• The family Π is sound; that is, for each instance of the problem w ∈ IX ,
if there exists an accepting computation of Π(w), then θX(w) = 1 (the
corresponding answer of the problem is yes).

• The family Π is complete; that is, for each instance of the problem w ∈ IX ,
if θX(w) = 1 (the answer to the problem is yes), then every computation
of Π(w) is an accepting computation (the system also responds yes).

The soundness property means that if we obtain an acceptance response of
the system (associated with an instance) through some computation, then
the answer to the problem (for that instance) has to be yes. The completeness
property means that if we obtain an affirmative response to the problem, then
any computation of the system must be an accepting one.
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Notice that in the above definition we consider two different tasks. The first
one is the construction of the family solving the problem, which we require
to be done in polynomial time; that is, there exists a deterministic Turing
machine M , and a polynomial function q(n) such that for each w ∈ IX , M(w)
provides a complete description of the system Π(w) in at most q(|w|) steps.
This is precomputation time, expressed in the number of sequential steps.

The second task is the execution of the systems Π(w) of the family, and
for this task we impose that the total number of steps performed by the
computations of system Π(w) is bounded by the polynomial function p(n).
This is the real computation time, and it is described by the number of parallel
steps.

In this section we use recognizer membrane systems without input mem-
brane in order to solve decision problems. In this context, we need to associate
with each instance of the problem such a system, accepting or rejecting it.
Bearing in mind the nondeterminism of the system, we require the confluence
condition; that is, all branches of a computation associated with the instance
eventually reach a unique configuration.

Unless P=NP, to solve an NP-complete problem in an efficient way using
P systems we have to create an exponential workspace in polynomial time.
This is possible in various types of membrane systems, for example, through
membrane division [24] (we can repeatedly divide membranes in order to ob-
tain 2n membranes in n steps), membrane creation [9], [13] (new membranes
are produced under the influence of the existing objects in a membrane), string
replication [4] (in a rewriting membrane system using string objects we can
generate exponentially many strings in linear time), or by using precomputed
resources [25], [6] (we start from an arbitrarily large initial membrane struc-
ture, without objects placed in its regions, and we trigger a computation by
introducing both objects and rules related to a given problem in a specified
membrane).

In [23] Gh. Păun explains the convenience of solving many NP-complete
problems in a uniform manner, that is, with P systems which are very similar
to each other. This idea about the uniformity of the P systems able to solve
a decision problem was formulated for the first time by A. Obtulowicz [17] in
relation to a proposed solution to SAT: the family of P systems (without input
membrane) described in [24] is generated in a logarithmic space by a multitape
deterministic Turing machine. We say that this construction is semi-uniform:
the systems of the family solving the decision problem are constructed starting
not from the size of an instance, but from an instance only; that is, in a
recursive manner, for each instance of the problem a P system associated
with it is constructed.

In contrast, in Section 5 we will define the concept of uniform construction
of families of P systems solving a decision problem.

Now, we briefly comment the different efficient solutions of NP-complete
problems in the framework of P systems without input, described in a semi-
uniform way, proposed until now.
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The first efficient solution to SAT is given by Gh. Păun in [24], using division
for non-elementary membranes. This result was improved by Gh. Păun, Y.
Suzuki, H. Tanaka, and T. Yokomori in [29] using only division for elementary
membranes (in that paper a solution to HPP using membrane creation is also
presented).

In [2], A. Alhazov and T.O. Ishdorj present a linear time solution to SAT
through P systems with active membranes without polarizations but using
some membrane rules (merging, separation, and release).

The first efficient solution to HPP by P systems is due to S.N. Krishna and
R. Rama [10], but using rules for d-division, with an arbitrary d (a solution to
Vertex Cover is also provided in this paper). The result of S.N. Krishna and
R. Rama about HPP was improved by A. Păun in [21] by using only rules for
2-division.

Different efficient solutions to several variants of SAT (3-SAT, Not-all-equal
3 SAT, One-in-three 3SAT, and Minimum 2-satisfiability) are decribed by Gh.
Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [29]. Also, in that paper
solutions to several problems of graph theory (Vertex Cover, k-closure, Inde-
pendent set, Graph 3-colourability, and Monochromatic triangle) are given by
P systems with active membranes using cooperative rules.

Other efficient solutions to SAT and HPP are given by J. Castellanos et al.
[4], through P systems using string replications (similar solutions are given by
S.N. Krishna and R. Rama in [11]), and by E. Czeizler [6], through P systems
using precomputed resources.

A polynomial solution to Integer Factorization Problem is presented by A.
Obtulowicz in [16] through deterministic P systems with active membranes
but using cooperative rules.

P. Sosik in [39] provides a semi-uniform efficient solution to QBF (satisfia-
bility of quantified propositional formulas), a well known PSPACE-complete
problem in the framework of P systems with active membranes but using
2-division for nonelementary membranes.

S.N. Krishna and R. Rama [12] show how P systems with membrane divi-
sion can theoretically break the most widely used cryptosystem, DES. That
is, given an arbitrary (plain text, cipher text) pair, one can recover the DES
key in linear time with respect to the length of the key.

In this section we present a semi-uniform solution to SAT problem due to
C. Zandron, G. Mauri, and C. Ferretti [41] (with slight modifications the above
solution can be adapted to a linear time solution by recognizer P systems, as
we point out at the end of subsection 4.1). We also describe a quadratic time
semi-uniform solution to the Hamiltonian Path Problem, a variant of a solu-
tion presented by M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-
Caparrini in [35].
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4.1 A Linear Time Solution to SAT

The Satisfiability Problem (SAT) is the following decision problem:

Given a propositional formula in conjunctive normal form,
determine if there exists a truth assignment of its variables
which makes the formula true.

In what follows we present a family of P systems with active membranes
using 2-division that solves SAT in linear time.

Given an instance φ of SAT we construct a P system Π(φ) whose function-
ing can be divided into the following stages:

(a) Generate all the possible truth assignments for the variables of φ. (This
will be done in a nondeterministic way.)

(b) Apply the assignments generated in the previous stage to the formula.
(c) Check if all the clauses have value true.
(d) Answer yes or no depending on the results from (c).

Let us suppose that φ is a formula with m clauses and n variables. That
is, φ = C1 ∧ · · · ∧ Cm for some m ≥ 1, with Ci = yi,1 ∨ · · · ∨ yi,pi for some
pi ≥ 1 and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.

The P system Π(φ) is defined as follows.

• The working alphabet is

Γ (φ) = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 0 ≤ i ≤ m}
∪ {ci | 1 ≤ i ≤ m − 1} ∪ {di | 0 ≤ i ≤ n} ∪ {yes}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2 is
said to be an internal membrane).

• The initial multisets associated with the membranes are M1 = λ and
M2 = a1a2 . . . and0.

• The rules are:
(a.1) [2ai]02 → [2ti]02 [2fi]02 , for 1 ≤ i ≤ n,
(a.2) [2dk → dk+1]02 , for 0 ≤ k ≤ n − 2,
(a.3) [2dn−1 → dnc]0

2
,

(a.4) [2dn]0
2
→ [2 ]

+
2
dn,

(b.1) [2ti → rhi,1 . . . rhi,ji
]+
2
, for 1 ≤ i ≤ n, and the clauses Chi,1 , . . . , Chi,ji

contain the literal xi,
(b.2) [2fi → rhi,1 . . . rhi,ji

]+
2

, for 1 ≤ i ≤ n, and the clauses Chi,1 , . . . , Chi,ji

contain the literal ¬xi,

(c.1) [2r1]+2 → [2 ]
−
2

r1,
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(c.2) [2ci → ci+1]−2 , for 1 ≤ i ≤ m,
(c.3) [2rk → rk−1]−2 , for 2 ≤ k ≤ m,
(c.4) r1[2 ]

−
2
→ [2r0]+2 ,

(c.5) [2cm+1]+2 → [2 ]
+
2
yes,

(d.1) [1yes]0
1
→ [1 ]01yes.

Let us see now that this P system indeed solves SAT for the formula φ.
The objects ai contained in the initial internal membrane of the system

correspond to the variables xi. By using a rule from (a.1), for i nondeterminis-
tically chosen, we produce the truth values true and false assigned to variable
xi. The truth values are represented by the objects ti and fi, respectively, and
are placed in two separate copies of the internal membrane. Since the charge
remains neutral for both membranes, the process can continue.

In this way, in n steps we assign truth values to all variables. Hence, we get
all the 2n different truth assignments for the formula φ, placed in 2n separate
internal membranes, which, in turn, are placed in the skin membrane. Note
that, in spite of the fact that in each step the object ai is nondeterministically
chosen, after n steps we get the same result, regardless of the objects used in
each step.

On the other hand, the objects di are used as counters, to control when
the process described above has finished. The initial internal membrane starts
with the object d0 and at each division step we pass from dk to dk+1 using
the rules from (a.2). Also, each new internal membrane created by division
gets copies of these objects, keeping their own counter this way. At the step
before the last division, the rule from (a.3) introduces both dn and c1. The
former object will exit the membrane (at step n+1 using the rule from (a.4)),
changing its polarization to positive, and this finishes the first stage and starts
the second one in that membrane. The latter object will be used in the third
stage.

In the second stage we look for the clauses satisfied by the truth assign-
ments associated with each internal membrane. We do this in one step in par-
allel for all the 2n membranes and in parallel for all the truth values present in
them, using the rules from (b.1) and (b.2). These rules introduce an object ri

in the membrane for each clause satisfied by the truth value being considered.
If, after completing this step, there is at least one internal membrane which

contains all symbols r1, . . . , rm, this means that the truth assignment associ-
ated with that membrane satisfies all the clauses, and therefore satisfies the
formula φ. Otherwise, if no internal membrane gets all the objects r1, . . . , rm,
the formula φ is not satisfiable. Note that the satisfiability problem has al-
ready been solved, in n + 2 steps, making an essential use of the parallelism,
but we still have to “read” the answer and send a suitable signal out of the
system.

We use the rules from (c.1–4) in the third stage to check if some internal
membrane has an associated truth assignment that makes true all the clauses
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of φ. To do this we carry out a loop in which we check in each step if the object
r1 is present, eliminate it, and perform a rotation of the objects r2, . . . , rm,
decreasing their subscripts by 1. It is clear that an internal membrane contains
all the objects r1, . . . , rm (that is, the truth assignment associated with it
satisfies all the clauses and, hence, the formula) if and only if we can run m
steps of the loop.

Let us take a closer look at how one step of the loop is performed. First the
rule from (c.1) checks whether or not the object r1 is present in the membrane.
If this is the case, r1 is sent out of the membrane, and the polarization of
the membrane is changed to negative. The membranes which do not contain
the object r1 remain positively charged and will no longer evolve; no further
rule can be applied to them. Next, for all the internal membranes negatively
charged (that is, those that had contained an object r1) the rules from (c.3)
decrease the subscripts of the objects r2, . . . , rm in that membrane, and the
rule from (c.4) gives back the object r1 from the skin membrane, changed to a
dummy object r0 which will never evolve again, and changing the polarization
of the membrane to positive so that the process can be started again. Note the
important fact that in the skin membrane we have a number of copies of the
object r1 equal to the number of membranes with a negative charge. Because
a rule from (c.4) can only involve one membrane and because these rules are
applied in the maximally parallel way, each membrane which contained before
an object r1 will now contain an object r0 and will be able to continue running
the loop.

Simultaneously, in an internal membrane negatively charged, the rule (c.2)
increases the subscripts of the objects ci. These objects are used to count the
number of steps of the previous loop that have been carried out. Thus, if an
object cm+1 appears in the membrane, it means the membrane contained all
the objects r1, . . . , rm since all the m steps of the loop have been able to run.
Also, the membrane is positively charged because the rule from (c.4) has just
been applied. Therefore, we can apply the rule from (c.5), which sends out
the object cm+1 to the skin as an object yes. Finally, this object is sent out
to the environment by means of the rule from (d.1).

The family of P systems Π(φ) constructed as above for each propositional
formula φ in conjunctive normal form is Turing polynomially uniform. Indeed,
the evolution rules are computable in a uniform way; the size of the working
alphabet is 4n + 2m + 2; the number of membranes in the initial membrane
structure is 2; the maximum cardinality of the initial multisets is n + 1; the
total number of rules is 4n + 2m + 4 and the maximum length of a rule is
max(7, m + 3).

However, this family should be adjusted in several respects in order to
fulfill the conditions requested by Definition 2 from Section 4 for a linear time
solution to SAT.

1. First, the P systems constructed above, although confluent, are nonde-
terministic. This is not really a problem, but if we want deterministic P
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systems, we have to change the rules for stage 1 so that they cover all the
objects ai sequentially, instead of choosing them nondeterministically.

2. Then, the P systems may not halt in linear time, because the rule from
(d.1) can only be applied once at a given time. If, for example, the formula
φ is valid, then we may have 2n objects yes in the skin membrane at
the last step of the computation. These objects are then sent out to the
environment one by one, so the total time used will be exponential. The
solution is easy: we change the polarization of the skin when the first
object yes is sent out, so that the rule from (c.2) cannot be applied any
more and the system halts.

3. Third, the P systems above are not recognizer systems. If the formula is
satisfiable, we obtain the answer yes in the environment, but if the formula
is not satisfiable the system halts without answering anything. To solve
this problem we can add objects to the skin membrane that count the
number of computation steps that have been carried out. With the aid
of these counters we can check if the system should have already sent an
object yes in case the formula is satisfiable. Otherwise, we can be sure that
the formula is not satisfiable and send an object no to the environment.

4.2 A Quadratic Time Solution to HPP

A Hamiltonian path in a graph G is a path that visits each of the nodes of G
exactly once. The Hamiltonian Path Problem (HPP) is the following decision
problem:

Given a graph G, determine if there exists a Hamil-
tonian path in G.

In the following discussion we will construct, in a way similar to that of
Section 7.2.2 of [25], a family of recognizer P systems with active membranes
using 2-division that solves HPP in quadratic time. Specifically, given an in-
stance G of HPP of size n (that is, with n nodes), we construct a P system
Π(G) whose functioning can be divided into the following stages:

(a) Generate all the possible paths in G of length n.
(b) For each of the previous paths, determine whether it visits all the nodes

of G.
(c) Answer yes or no depending on the results from (b).

Consequently, this P system solves HPP for G, because a path in G is Hamil-
tonian if and only if it has length n and visits all the nodes of G.

Before describing Π(G) in full detail, we have to fix several notations. Let
G be a graph of size n. We denote by V = {v1, . . . , vn} the set of nodes and
by E the set of edges of G. Given a node vi, we assume that the set of nodes
adj(vi) = {vji

1
, . . . , vji

k(i)
} adjacent to v is ordered such that ji

1 < · · · < ji
k(i)

(and, since we suppose G to be connected, it is nonempty).
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For example, let us consider the graph in Figure 1. For this graph, V =
{v1, v2, v3} and E = {{v1, v2}, {v1, v3}}. Also, adj(v1) = {v2, v3}, so k(1) = 2
and j1

1 = 2, j1
2 = 3; adj(v2) = {v1}, so k(2) = 1 and j2

1 = 1; adj(v3) = {v1},
so k(3) = 1 and j3

1 = 1.

��
�
�
�
��

�
�
�

���

�

v1

v2 v3

Fig. 1. Example graph.

The P system Π(G) is defined as follows.

• The working alphabet is

Γ (G) = {vi | 1 ≤ i ≤ n} ∪ {vi,j | 1 ≤ i, j ≤ n} ∪ {ai→j,l | 1 ≤ i, j, l ≤ n}
∪ {r′i | 1 ≤ i ≤ n} ∪ {ri | 0 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ n + 1}
∪ {di | 0 ≤ i ≤ n2 + 2n + 4} ∪ {c, an+1, yes, no}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2
is said to be internal).

• The initial multisets associated with the membranes are M1 = d0 and
M2 = v1.

• The rules are:
(a.1) [2vi]02 → [2vi,1]−2 [2vi+1]02 , for 1 ≤ i ≤ n − 2,
(a.2) [2vn−1]02 → [2vn−1,1]−2 [2vn,1]−2 ,
(a.3) [2vi,l → r′iai→ji

1,l]−2 , for 1 ≤ i ≤ n, 1 ≤ l ≤ n − 1,

(a.4) [2vi,n → r′ican+1]−2 , for 1 ≤ i ≤ n,
(a.5) [2ai→ji

k,l]−2 → [2vji
k,l+1]−2 [2ai→ji

k+1,l]−2 , for 1 ≤ i ≤ n, 1 ≤ k ≤ k(i) −
1, 1 ≤ l ≤ n − 1,

(a.6) [2ai→ji
k(i),l

→ vji
k(i),l+1]−2 , for 1 ≤ i ≤ n, 1 ≤ l ≤ n − 1,

(a.7) [2an+1]−2 → [2 ]
+
2
an+1,

(b.1) [2r
′
i → ri]+2 , for 1 ≤ i ≤ n,

(b.2) [2c → c1]+2 ,
(b.3) [2r1]+2 → [2 ]

−
2

r1,
(b.4) [2ri → ri−1]−2 , for 1 ≤ i ≤ n,
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(b.5) [2ci → ci+1]−2 , for 1 ≤ i ≤ n,
(b.6) r1[2 ]

−
2
→ [2r0]+2 ,

(b.7) [2cn+1]+2 → [2 ]+2 cn+1,

(c.1) [1cn+1]01 → [1 ]+1 yes,
(c.2) [1di → di+1]01 , for 0 ≤ i ≤ n2 + 2n + 3,
(c.3) [1dn2+2n+4]01 → [1 ]

−
1

no.

Let us see now that this P system indeed solves HPP for G.
The rules from (a.1) to (a.7) perform the first stage; that is, they generate

all the possible paths in G of length n. In this stage, the objects vi denote
the starting node of the path to be generated, whereas the objects vi,l means
that we are considering the node vi as the lth element of the path.

We first create by succesive divisions, using the rules from (a.1) and (a.2),
n internal membranes in which the paths starting from each of the nodes
of G will be generated. Each of these membranes contains a different object
vi,1; that is, the first node in the path being considered in the corresponding
membrane is the node vi. Also, these membranes are negatively charged, and
they remain this way through the first stage.

Suppose now that an internal membrane contains an object vi,l, meaning
that the current node being considered as the lth element of the path is the
node vi. The rule (a.3) keeps a record of this fact by means of the object r′i
and starts the process of choosing the next node in the path. This process is
performed by the rules from (a.5) and (a.6) which generate a new membrane
for each of the nodes adjacent to vi. This is done by successive divisions of
the internal membrane using the objects of type ai→j,l to cover all the nodes
in adj(vi). These objects transform themselves into an object vj,l+1 in one of
the new membranes created, to indicate that the (l + 1)th node to include in
the path is vj , and into another object ai→j′,l in the other new membrane, to
consider the next node adjacent to vi.

Observe that the generation of the paths is done in parallel but not si-
multaneously, because we continue generating the path as soon as we choose
the node adjacent to the current one. In other words, we do not wait until
all the membranes considering a node adjacent to the current one have been
generated to continue with the next element of the path.

Finally, when the last node of the path is reached, the rules from (a.4) are
applied, keeping a record of this last node and introducing an object c to be
used in the next stage and an object an+1 to start the stage.

For the rules corresponding to the second stage not to be fired at the same
time as the rules corresponding to the first stage, the sets of objects used in
each of them are disjoint. At the beginning of the second stage the objects
r′i and c produced in the first stage are transformed into objects ri and c1,
respectively. Now we can check for the existence of a membrane containing
all the objects r1, . . . , rn the same way as is done in the third stage of the
solution to SAT presented in subsection 4.1.
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Finally, suppose that there is a Hamiltonian path in G. Then, at least one
of the internal membranes created along the first stage contains all the objects
r1, . . . , rn. An object cn+1 is then sent out of this membrane at the end of the
second stage. Using the rule (c.1) this object is sent to the environment as an
object yes and the charge of the skin is changed to positive. Hence, the rule
(c.3) cannot be applied and, since the P system eventually halts, the answer
to the HPP problem for G is positive.

On the other hand, if there is no Hamiltonian path in G, no internal
membrane contains all the objects r1, . . . , rn. Therefore, all these membranes
stall at some moment of the second stage without sending out an object cn+1,
which, in turn, cannot be sent out to the environment to produce a positive
answer.

We focus our attention on the rule (c.2); this rule is applied at each step
of the computation and uses objects di to count how many steps have been
performed. It is easy to see that stage 1 lasts at most n2 + 1 steps and stage
2 lasts at most 2n + 2 steps. Hence, if at step n2 + 2n + 4 the charge of the
skin has not changed to positive by means of the rule (c.1), then the answer
must be negative; this is shown using the rule (c.3) to send an object no to
the environment. The P system then halts.

Now, we are going to justify that the family Π = (Π(G))G∈HPP solves
the problem HPP in quadratic time.

First, the above description of the evolution rules is computable in a uni-
form way. It is also a polynomial description, since the size of the working
alphabet is n3 + 2n2 + 6n + 10; the number of membranes in the initial mem-
brane structure is 2; the maximum cardinal of the initial multisets is 1; the
total number of evolution rules is at most n3 + 7n + 9; and the maximum
length of a rule is 7. Hence, the family Π is Turing polynomially uniform.

Second, the family Π is polynomially bounded, since Π(G) is deterministic
for every G and the total number of steps performed by the computation of
Π(G) is at most n2 + 2n + 5, which is quadratic in the size of G.

Third, from the description of the functioning of the P system Π(G) it
can be seen that the family Π is sound and complete.

5 Recognizer P Systems with Input

Recall that a P system with input is a tuple (Π, Σ, iΠ), where (a) Π is a P
system with working alphabet Γ and p membranes labeled 1, . . . , p, with initial
multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ , and the initial multisets are over Γ − Σ; and (c) iΠ
is the label of a distinguished (input) membrane. If m is a multiset over Σ,
then the initial configuration of (Π, Σ, iΠ) with input m is (μ,M1, . . . ,MiΠ ∪
m, . . . ,Mp).

In this section we deal with recognizer P systems with input membrane and
we propose to solve hard problems in a uniform way in the following sense: all
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instances of a decision problem that have the same size (according to a given
polynomial time computable criterion) are processed by the same system, to
which an apropriate input, that depends on the concrete instance, is supplied.

This method for solving problems provides a general purpose algorithmic
solution in the following sense: if we want to implement such a solution, a
system constructed to solve an instance of the problem can also to be used
when trying to solve another instance of the same size.

Now, we formalize these ideas in the following definition.

Definition 3. Let X = (IX , θX) be a decision problem. We say that X is
solvable in polynomial time by a family of recognizer membrane systems with
input Π = (Π(n))n∈N if the following is true:

• The family Π is Turing polynomially uniform; that is, there exists a de-
terministic Turing machine that constructs in polynomial time the system
Π(n) starting from n ∈ N.

• There exist two polynomial time computable functions, cod and s over the
set IX of instances of X, such that:
– For every w ∈ IX , s(w) is a natural number and cod(w) is an input

multiset of the system Π(s(w)).
– The family Π is polynomially bounded; that is, there exists a polynomial

function p(n) such that for each w ∈ IX every computation of the
system Π(s(w)) with input cod(w) is halting and, moreover, performs
at most p(|w|) steps.

– The family Π is sound; that is, for each w ∈ IX if there exists an
accepting computation of the system Π(s(w)) with input cod(w), then
θX(w) = 1.

– The family Π is complete; that is, for each w ∈ IX , if θX(w) = 1,
then every computation of the system Π(s(w)) with input cod(w) is an
accepting computation.

The soundness property means that if given an instance we obtain an
acceptance response of the system associated with it (and individualized by the
apropriate input multiset) through some computation, then the answer to the
problem (for that instance) has to be yes. The completeness property means
that if we obtain an affirmative response to the problem, then any computation
of the system associated with it (and individualized by the apropriate input
multiset) must be an accepting one.

Note that in the above definition we consider three different tasks. The
first is the construction of the family solving the problem, which we require
to be done in polynomial time. The second is the task performed by the
polynomial time computable functions cod and s. The third is the execution
of the systems Π(n) of the family (with the appropriate input multiset), for
which we impose the total number of steps performed by their computations
to be bounded by a polynomial function.

Hence, to solve an instance w, we first of all need to compute the natu-
ral number s(w), obtain the input multiset cod(w), and construct the system
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Π(s(w)). This is a precomputation stage, running in polynomial time repre-
sented by the number of sequential steps. Next, we execute the system Π(s(w))
with input cod(w). This is the proper computation stage, also running in poly-
nomial time, but now the time is represented by the number of parallel steps.

Consequently, in order to solve a decision problem in this context, we
need two polynomial time computable functions over the set of instances of
the problem, in such a way that the first function assigns the P system that
will process the instance when we give a suitable input provided by the second
function. Then the system will accept or reject the instance. Bearing in mind
the nondeterminism of the system, we require the confluence condition; that
is, all computations of the system associated with the instance must always
have the same answer.

Now, we briefly comment on the different efficient solutions of NP-
complete problems obtained in the framework of P systems with input, de-
scribed in a uniform way, so far proposed. Unless stated otherwise, the so-
lutions cited are described in the usual framework of P systems with active
membranes using 2-division, with three electrical charges, without change of
membrane labels, without cooperation, and without priority.

M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini present
in [34] a linear time solution to SAT in a semi-uniform manner but in such a
way that we can easily decribe that solution in an uniform manner (see [35]).
Other interesting uniform linear time solutions to SAT are given by:

• A. Alhazov [1], through P systems with active membranes and using only
two electrical charges.

• L. Pan, A. Alhazov, and T.O. Ishdorj [18], in the framework of P systems
with active membranes, and without division, without polarizations, but
using three types of membrane rules (separation, merging, and release).

• L. Pan and T.O. Ishdorj [19], through P systems with separation rules
instead of division rules, in two different cases: in the first, using polar-
izations and separation rules; and in the second without polarizations and
without change of membrane labels, but using separation rules with change
of membrane labels.

• Gh. Păun, M.J. Pérez-Jiménez, and A. Riscos-Núñez [26], using P systems
with tables of rules (each membrane is associated with several sets of
rules, one of which is nondeterministically chosen in each computation
step); in particular, they consider tables with obligatory rules, which are
distinguished rules which must be applied at least once when the table is
applied.

In [36], M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini
present the first linear time uniform solution to the VALIDITY problem, for
formulas in conjuctive normal form.

Different efficient solutions to graph problems (Vertex Cover, Clique) in a
uniform way are presented by A. Alhazov, C. Mart́ın-Vide, and L. Pan in [3].
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The first efficient and uniform solutions to numerical NP-complete prob-
lems were given by M.J. Pérez-Jiménez and A. Riscos-Núñez in [30] where a
solution to the Knapsack problem was presented. A uniform solution to Mul-
tiset 0–1 Knapsack problem is given in the same framework by L. Pan and C.
Mart́ın-Vide in [20].

Other uniform solutions to numerical problems are the following:

• M.J. Pérez-Jiménez and A. Riscos-Núñez provide in [31] a solution to
Subset Sum, and in [7] give a solution to the Partition problem.

• M.J. Pérez-Jiménez and F.J. Romero-Campero present in [32] a solution
to the Bin Packing problem, and in [33] give a solution to Common Al-
gorithmic Problem, a problem with a property of local universality in the
sense that many other interesting NP-complete problems can be reduced
to it in linear time.

In this section we present a linear time uniform solution to the Knapsack
problem, and a quadratic time uniform solution to the decision version of the
Common Algorithmic Problem.

5.1 A Linear Time Solution to the Decision Knapsack Problem

The decision Knapsack problem (0/1) is as follows:

Given a knapsack of capacity k ∈ N, a set A of n elements,
where each element has a “weight” wi ∈ N and a “value”
vi ∈ N, and given a constant c ∈ N, decide whether or
not there exists a subset of A such that its weight does not
exceed k and its value is greater than or equal to c.

The instances of the problem will be represented by tuples of the form
(n, (w1, . . . , wn), (v1, . . . , vn), k, c), where n is the size of the set A, (w1, . . . , wn)
and (v1, . . . , vn) are the weights and the values, respectively, of the elements
from A, and k and c are the constants mentioned above. The funtions w and
v can be extended to every subset of A in a natural way from the data in
the instance. Also, we consider the size of the instance to be 〈n, k, c〉 (where
〈〉 is a polynomial encoding of the tuple, for example, using the Cantor pair
function).

In the discussion that follows we will construct a family of recognizer P
systems with active membranes using 2-division and with input that solves
the decision Knapsack problem (0/1) in linear time. Specifically, given the size
n of the set A and two constants k and c, we construct a P system Π(n, k, c)
that solves all the instances of size 〈n, k, c〉, given an appropriate encoding for
the input membrane of the weights and values of the elements from A. The
functioning of this P system can be divided in the following stages:

(a) Generate all the subsets of A, computing simultaneously the weights and
the values of the subsets.
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(b) For all the subsets check if the condition w(B) ≤ k holds.
(c) For all the subsets of A that satisfy the first condition, check if the con-

dition v(B) ≥ c holds.
(d) Answer yes or no according to the results of the two checking stages.

The P system Π(n, k, c) is defined as follows.

• The input alphabet is Σ(n, k, c) = {x1, . . . , xn, y1, . . . , yn}.
• The working alphabet is

Γ (n, k, c) = {a0, a, ā0, ā, b0, b, b̄0, b̄, b̂0, b̂, d+, d−, e0, . . . , en,

q0, . . . , q2k+1, q, q̄, q̄0, . . . , q̄2c+1, x0, . . . , xn, y0, . . . , yn,

yes, no, z0, . . . , z2n+2k+2c+6, #}.

• The set of labels is {s, e}.
• The initial membrane structure is [

s
[
e

]0
e
]0
s

(each membrane with label e is
said to be internal).

• The input membrane is the one with label e.
• The initial multisets associated with the membranes are Ms = z0 and

Me = e0ā
kb̄c.

• The rules are:
(a.1) [

e
ei]0e → [

e
q]−

e
[
e
ei]+e , for 0 ≤ i ≤ n,

(a.2) [
e
ei]+e → [

e
ei+1]0e [eei+1]+e , for 0 ≤ i ≤ n − 1,

(a.3) [
e
x0 → λ]+

e
, [

e
xi → xi−1]+e , for 1 ≤ i ≤ n,

(a.4) [ex0 → ā0]0e ,
(a.5) [

e
y0 → λ]+

e
, [

e
yi → yi−1]+e , for 1 ≤ i ≤ n,

(a.6) [ey0 → b̄0]0e ,

(a.7) [
e
q → q̄q0]−e , [

e
ā0 → a0]−e , [

e
ā → a]−

e
, [

e
b̄0 → b̂0]−e , [

e
b̄ → b̂]−

e
,

(b.1) [
e
a0]−e → [

e
]0
e
#, [

e
a]0

e
→ [

e
]−
e

#,
(b.2) [

e
q2j → q2j+1]−e , for 0 ≤ j ≤ k,

(b.3) [eq2j+1 → q2j+2]0e , for 0 ≤ j ≤ k − 1,
(b.4) [

e
q2j+1]−e → [

e
]+
e

#, for 0 ≤ j ≤ k,

(b.5) [e q̄ → q̄0]+e , [e b̂0 → b0]+e , [e b̂ → b]+
e
, [ea → λ]+

e
,

(c.1) [
e
b0]+e → [

e
]0
e
#, [

e
b]0

e
→ [

e
]+
e
#,

(c.2) [
e
q̄2j → q̄2j+1]+e , for 0 ≤ j ≤ c,

(c.3) [
e
q̄2j+1 → q̄2j+2]0e , for 0 ≤ j ≤ c − 1,

(c.4) [
e
q̄2c+1]+e → [

e
]0
e
yes, [

e
q̄2c+1]0e → [

e
]0
e
yes,

(d.1) [szi → zi+1]0s , for 0 ≤ i ≤ 2n + 2k + 2c + 5,
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(d.2) [
s
z2n+2k+2c+6 → d+d−]0

s
,

(d.3) [
s
d+]0

s
→ [

s
]+
s
d+, [

s
d− → no]+

s
,

(d.4) [
s
yes]+

s
→ [

s
]0
s
yes, [

s
no]+

s
→ [

s
]0
s
no.

Let us see if this P system solves the Knapsack problem for every instance
of size 〈n, k, c〉. First of all we must define a polynomial encoding of the prob-
lem into the family Π in order to give a suitable input to the system. Given an
instance u = (n, (w1, . . . , wn), (v1, . . . vn), k, c) of the Knapsack problem, we
define cod(u) = xw1

1 . . . xwn
n yv1

1 . . . yvn
n . Now we will informally describe how

the system Π(n, k, c) with input cod(u) works.
As we have just shown, the objects xi and yi will represent the weights

and values of the elements of A. On the other hand, the objects ā and b̄ (the
first will change to a for the second stage, while the second will change to b̂
for the second stage and to b for the third stage), included from the beginning
by definition of the system, represent the constants k and c, respectively.

In the first stage of the computation the initial internal membrane is con-
tinuosly divided by means of the rules from (a.1) and (a.2). These membrane
divisions are controlled by the objects ei, which represent the elements of the
set A being considered. The charges of the newly created membranes indicate
whether or not the element has been included in the subsets of A that are
being generated. We show in Figure 2 an example for n = 4 of the membrane
generation tree that is obtained.

Let us introduce the concept of subset associated with an internal mem-
brane through the following recursive definition:

• The subset associated with the initial internal membrane is the empty one.
• When an object ej appears in a neutrally charged internal membrane

(with j < n), the jth element of A is selected and added to the previously
associated subset. Once the stage is over, the associated subset will not be
modified any more.

• When a division rule is applied, the two newborn internal membranes
inherit the associated subset from the original one.

What we intend to get is a single internal membrane for each subset of A
but, as we will later see, the membranes are not generated simultaneously (it
can be shown that the membrane corresponding to the subset {ai1 , . . . , air}
is generated at the (ir + r + 2)th computation step).

After a division rule from (a.1) is applied, the two new membranes will
behave in quite different ways. On the one hand, in the negatively charged
membrane (we have marked such membranes in Figure 2 with a circle) the
first stage ends, and in the next step the rules from (a.5) will be applied,
renaming the objects to prepare the third stage. This is a significant step,
so we will designate as relevant those membranes that have negative charge
and contain an object q0. A relevant membrane will not further divide during
the computation, and its associated subset will remain unchanged. On the
other hand, the positively charged membranes will continue the generation of
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Fig. 2. Membrane generation tree for n = 4.
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subsets of A; they will give rise to membranes associated with subsets that
are obtained by adding elements of A of index i + 1 or greater to the current
subset. Note that if i = n, then the membrane cannot continue generating
subsets, since it is not possible to add elements of indices greater than n. This
has been taking into account because, as there is no rule from (a.1) or (a.2)
that can be applied to an object en in a positively charged membrane (see the
membranes surrounded by a diamond in Figure 2), the membrane halts.

Thus, since the indices of objects ei never decrease, the relevant membranes
are generated in a kind of lexicographic order, in the following sense: if the
jth element of A has already been added to the associated subset, then no
element with index lower than j will be added later to the subset associated
with that membrane, or to the subsets associated with its descendants.

The generation of subsets and the computation of their weights and values
are carried out in parallel. In fact, there is only a gap of one step of compu-
tation between the time an element is added to the associated subset and the
time the new weight and value of the subset are updated. The rules involved
here are those from (a.3–6). Recall that the objects xi represent the weights
of the elements of A and the objects yi represent their values. The rules from
(a.3) and (a.5) performed a rotation of these objects so that the objects x0

and y0 correspond to the weight and the value of the current element of A;
that is, if a positively charged internal membrane contains an object ei, mean-
ing that the element of A being considered is the ith one, then the objects x0

represent the weight of the element and the objects y0 represent the value. On
the other hand, if an internal membrane contains an object ei and is neutrally
charged, it means that the ith element of A is going to be added to the subset
associated with the membrane. Then the weight and value of the subset have
to be updated. This is done by means of the rules from (a.4) and (a.6), which
transform the objects x0 and y0 into objects ā0 and b̄0 representing the partial
weight and value of the subset (note that the objects ā0 will change to a0 for
the second stage, and the objects b̄0 will change to b̂0 for the second stage and
to b0 for the third stage).

The purpose of the rules from (a.5) is to prevent the rules for the second
stage from being applied to an internal membrane that has not yet reached
the end of the first stage. For that, we rename the objects obtained at the
end of the latter, q, ā0, ā, b̄0, and b̄, to objects q̄, q0, a0, a, b̂0, and b̂ that are not
used in it. The objects q̄, b̂0, and b̂ are not used until the third stage, so they
remain unchanged through the second stage. The objects a0 and a are used in
a loop that checks if the weight of the subset of A being considered satisfies
the condition of being less than or equal to k. The rules from (b.1) eliminate
alternatively (the alternation is controlled by the negative and neutral charges
of the membrane), at each step of the loop, one by one, until we run out of
one (or both) of the objects. It is easy to see that the required condition is
verified if and only if the loop can make an even number of steps. The objects
qi are then used to count the number of steps performed by the loop.
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Let us see in a more detail how this loop works. Let B be a subset of a
certain weight wB. The evolution of the relevant membrane associated with
it along the second stage is described in Table 1.

Multiset Charge Parity of qi

q0a
wB
0 ak q̄b̂vB

0 b̂c − EVEN

q1a
wB−1
0 ak q̄b̂vB

0 b̂c 0 ODD

q2a
wB−1
0 ak−1 q̄b̂vB

0 b̂c − EVEN
...

...
...

q2j awB−j
0 ak−j q̄b̂vB

0 b̂c − EVEN

q2j+1 a
wB−(j+1)
0 ak−j q̄b̂vB

0 b̂c 0 ODD
...

...
...

Table 1. Comparison of weight with k.

Note 1. Observe that the index of qi coincides with the total number of copies
of a and a0 that have already been erased during the comparison.

Note 2. If B = {ai1 , . . . , air} with ir �= n, then there will be in the multiset
some objects xj and yj, for 1 ≤ j ≤ n − ir, but they are irrelevant for this
stage and therefore they will be omitted.

If the number wB of objects a0 is less than or equal to the number k of
objects a, then the result of this stage is successful and we can proceed with
the next stage. This situation is described in Table 2.

Multiset Charge Parity of qi

...
...

...

q2wB−1 ak−wB+1 q̄b̂vB
0 b̂c 0 ODD

q2wB ak−wB q̄b̂vB
0 b̂c − EVEN

q2wB+1 ak−wB q̄b̂vB
0 b̂c − ODD

ak−wB q̄b̂vB
0 b̂c + ODD

Table 2. Weight less than or equal to k.

If the number wB of objects a0 is greater than the number k of objects a,
then every time the rules from (b.2) can be applied (that is, for j = 0, . . . , k),
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the first rule from (b.1) will also be applied. Thus, we can never get to a
situation where the index of the counter qi is an odd number and the charge
of the internal membrane is negative. This means that the rule (b.4) can
never be applied, and moreover, the membrane gets blocked (it will not evolve
anymore during the computation). This situation is described in Table 3.

Multiset Charge Parity of qi

...
...

...

q2k−1 awB−k
0 a q̄b̂vB

0 b̂c 0 ODD

q2k awB−k
0 q̄b̂vB

0 b̂c − EVEN

q2k+1 a
wB−(k+1)
0 q̄b̂vB

0 b̂c 0 ODD

Table 3. Weight greater than k.

Let us suppose that the second stage has successfully finished in an internal
membrane. That means that this membrane encodes a subset B ⊆ A such
that w(B) ≤ k. Then, after applying the rule (b.4), this membrane gets a
positive charge. For the objects used in this stage, so as not to fire the rules
corresponding to the next stage, they are renamed by means of the rules from
(b.5). In this way, the objects b̂0 are transformed to objects b0 and the objects
b̂ to objects b. The counter q̄i is initialized to q̄0.

The third stage works in a similar way as the second one, using the rules
from (c.1), (c.2), and (c.2) corresponding to the rules from (b.1), (b.2), and
(b.3), respectively. The end of the stage, however, is different. In this stage,
we have to check if the number of objects b0, corresponding to the value of
the subset of A associated with the membrane, is greater than or equal to the
number of objects b, corresponding to the constant c. Therefore, to pass to
the final stage the two rules from (c.1) must have been applied c times each.
Consequently, the rules from (c.2) and (c.3) take the counter of the loop to
qc+1, when the rules from (c.4) send it out to the skin as a yes object. Table
4 summarizes all the process described above.

Finally, rules from (d.1–3) are associated with the skin membrane and
take care of the output stage. The counter zi, used by the rules from (d.1)
and (d.2), waits through 2n + 2k + 2c + 7 steps (2n + 3 steps for the first
stage, 2k + 2 steps for the second stage and 2c + 2 for the third stage). After
all these steps are performed, we are sure that all the inner membranes have
already finished their checking stages (or have already got blocked), and thus,
the output process is activated.

Then, the skin will be neutrally charged and will contain the objects d+

and d−. Furthermore, some objects yes will be present in the skin if and only
if both checking stages have been successful in at least one internal membrane.
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Multiset Charge Parity of qi

q̄0b
vB
0 bc + EVEN

q̄1b
vB−1
0 bc 0 ODD
...

...
...

q̄2c−1b
vB−c
0 b 0 ODD

q̄2cb
vB−c
0 + EVEN

q̄2c+1b
vB−(c+1)
0 (if vB > c) 0 ODD

or q̄2c+1 (if vB = c) + ODD

b
vB−(c+1)
0 or ∅ +

Table 4. Comparison of value with c.

The output process then begins. First the object d+ is sent out to the
environment, giving a positive charge to the skin. Then the object d− evolves
to no inside the skin and, simultaneously, if there exists any object yes present
in the membrane, it is sent out of the system, giving a neutral charge to the
skin and making the system halt (in particular, further evolution of the object
no is avoided).

Otherwise, if none of the membranes has successfully passed both checking
stages, then there will be no object yes present in the skin when the output
stage begins. Thus, after the object no is generated, the skin will still have
a positive charge, so the object will be sent out to the environment and the
system will halt.

Now we are going to justify that the family Π = (Π(n, k, c))n,k,c∈N solves
the decision Knapsack problem (0/1) in linear time.

First, the above description of the system is computable in a uniform way.
It is also a polynomial description, since the size of the input alphabet is 2n;
the size of the working alphabet is 5n + 4k + 4c + 31; the size of the set of
labels is 2; the number of membranes in the initial membrane structure is
2; the maximum cardinal of the initial multisets is 3; the total number of
evolution rules is 6n + 5k + 4c + 34; and the maximum length of a rule is 7.
Hence, the family Π is Turing polynomially uniform.

Second, the family Π is linearly bounded, since given an instance u =
(n, (w1, . . . , wn), (v1, . . . , vn), k, c) of the problem, the total number of steps
performed by the unique computation of the system Π(n, k, c) given the input
cod(u) is at most 2n + 2k + 2c + 10.

Third, from the description of the functioning of the P system Π(n, k, c)
it can be seen that the family Π is sound and complete.
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5.2 A Quadratic Time Solution to CADP

The Common Algorithmic Problem (CAP) [8] is the following optimization
problem:

Let S be a finite set and F be a family of subsets of S, called
forbidden sets. Find the cardinality of a maximal subset of
S which does not include any set belonging to F .

The Common Algorithmic Problem can be transformed into a roughly
equivalent decision problem by supplying a target value to the quantity to
be optimized, and asking the question as to whether or not this value can be
attained.

The Common Algorithmic Decision Problem (CADP) is the following deci-
sion problem:

Let S be a finite set, F be a family of subsets of S, and
k ∈ N. Determine if there exists a subset A of S such that
|A| ≥ k, and which does not include any set belonging to F .

We will say that a problem X is a subproblem of another problem Y if
there exists a linear time reduction from X to Y (using logarithmic bounded
space). That is, X is a subproblem of Y if we can pass from the former to the
latter by a simple rewriting process.

Next, we present some NP-complete decision problems that are subprob-
lems of CADP.

• The Independent Set Decision Problem (ISD): Given an undirected graph
G, and k ∈ N, determine whether or not G has an independent set of size
at least k.

• The Vertex Cover Decision Problem (VCD): Given an undirected graph G,
and k ∈ N, determine whether or not G has a vertex cover of size at
most k.

• The Clique Decision Problem (CDP): Given an undirected graph G, and
k ∈ N, determine whether or not G has a clique of size at least k.

• The Hamiltonian Path Problem (HPP).
• The Satisfiability Problem (SAT).
• The Tripartite Matching Problem: Given three sets B, G, and H, each

containing n elements, and a ternary relation T ⊆ B ×G×H, determine
whether or not there exists a subset T ′ of T such that |T ′| = n and no two
triples belonging to T ′ have a component in common.

In what follows we will construct a family of recognizer P systems with
active membranes using 2-division and with input that solves CADP in polyno-
mial time. Specifically, given the size n of the set S, the size m of the set F ,
and a constant k, we construct a P system Π(n, m, k) that solves the problem
for all the instances of size 〈n, m, k〉, given as input an appropriate encoding
of the subsets of S belonging to F . The functioning of this P system can be
divided into the following stages:
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(a) Generate maximal subsets A of S not including any element of F . For
this, we start from the complete set S and eliminate one element from
each of the forbidden sets.

(b) For all the previous subsets, compute their cardinality.
(c) Check if any of the subsets has cardinality greater than or equal to k (in

fact, we check if the cardinality is greater than k − 1).
(d) Answer yes or no according to the results from the previous stage.

The P system Π(n, m, k) is defined as follows.

• The input alphabet is Σ(n, m, k) = {si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
• The working alphabet is

Γ (n, m, k) = Σ(n, m, k) ∪ {ai | 1 ≤ i ≤ m} ∪ {ci | 0 ≤ i ≤ 2n + 1}
∪ {chi | 0 ≤ i ≤ 2k − 1} ∪ {fj | 1 ≤ j ≤ n + 1}
∪ {ei, j, l | 1 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1}
∪ {gj | 0 ≤ j ≤ nm + m + 1}
∪ {z, s+, s−, S+, S−, S, o, Õ, O, t, neg,#, yes, preno, no}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2
is said to be internal).

• The input membrane is the one with label 2.
• The initial multisets associated with the membranes are M1 = λ and

M2 = g0z
msn

+ok−1.
• The rules are:
(a.1) [2s1,j → fj]02 , for 1 ≤ j ≤ n,
(a.2) [2si,j → ei,j,j ]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n,
(a.3) [2f1]02 → [2#]0

2
[2s−]+

2
,

(a.4) [2fj → fj−1]02 , for 2 ≤ j ≤ n + 1,
(a.5) [2fj → λ]+

2
, for 1 ≤ j ≤ n + 1,

(a.6) [2ei,j,l → ei,j,l−1]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l ≤ j + 1,
(a.7) [2e2,j,l → fj+1]+2 , for 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1, l �= 0,
(a.8) [2ei,j,l → ei−1,j,j+1]+2 , for 3 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1, l �= 0,
(a.9) [2ei,j,0 → ai−1]+2 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n,

(a.10) [2z]+
2
→ [2 ]

0
2
#,

(a.11) [2a1]02 → [2 ]
+
2
#,

(a.12) [2a1 → λ]+
2

, [2ai → ai−1]+2 , for 2 ≤ i ≤ m,
(a.13) [2gj → gj+1]02 , [2gj → gj+1]+2 , for 0 ≤ j ≤ nm + m,
(a.14) [2gnm+m+1 → c0neg]0

2
,

(a.15) [2neg]0
2
→ [2 ]

−
2

#,
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(a.16) [2s+ → S+]−
2

, [2s− → S−]−
2

, [2o → Õ]−
2

,
(a.17) [2z]−

2
→ #,

(b.1) [2S−]−
2
→ [2 ]

+
2
#, [2S+]+

2
→ [2 ]

−
2

#,
(b.2) [2ci → ci+1]−2 , [2ci → ci+1]+2 , for 0 ≤ i ≤ 2n,
(b.3) [2c2n+1 → ch0t]−2 ,
(b.4) [2t]−2 → [2 ]02#,

(b.5) [2S+ → S]0
2
, [2Õ → O]0

2
,

(c.1) [2S]0
2
→ [2 ]

+
2

#, [2O]+
2
→ [2 ]

0
2
#,

(c.2) [2chi → chi+1]02 , [2chi → chi+1]+2 , for 0 ≤ i ≤ 2k − 2,
(c.3) [2ch2k−1]+2 → [2 ]

+
2

yes, [2ch2k−1]02 → [2 ]
0
2
preno,

(d.1) [1yes]0
1
→ [1 ]+1 yes,

(d.2) [1preno → no]0
1
,

(d.3) [1no]0
1
→ [1 ]

−
1

no.

Let us see if this P system solves CADP for every instance of size 〈n, m, k〉.
First of all we must define a polynomial encoding of the problem into the
family Π in order to give a suitable input to the system. Given an instance
u = (S, F, k) of the problem, where S = {a1, . . . , an}, F = {B1, . . . , Bm}, and
Bi = {aji

1
, . . . , aji

k(i)
}, we define cod(u) = s1,j1

1
. . . s1,j1

k(1)
. . . sm,jm

1
. . . sm,jm

k(m)
.

That is, the object si,j introduced in the initial membrane will represent the
fact that the set Bi contains the element aj .

Now we informally describe how the system Π(n, m, k) with input cod(u)
works.

To perform the first stage we start from the complete set S and make a
loop to consider sequentially all the sets B1, . . . , Bm. Inside this loop we make
another loop in which we generate a number of diferent subsets of S obtained
by eliminating only one element of the current set Bi.

The core of this stage are the rules from groups (a.3–8). For these rules, the
objects fi represent the elements of the current set Bi, while the objects ei,j,l

represent the elements of the sets Bj not yet considered. The purpose of the
rules from (a.1) and (a.2) is now clear; we have to change the representation
of the sets Bi from the objects si,j to the objects fi and ei,j,l, and we do this
in such a way that B1 is the first forbidden set considered.

In the rule from (a.3) the object f1 represents the element to eliminate
from the current forbidden set. This rule creates two new membranes, one
neutrally charged and the other positively charged. The former means that we
have decided not to eliminate the element, so with the rule (a.4) we perform
a rotation of the subscripts of the objects fi, for the elements of Bi to be
considered for elimination in a sequential way. The latter membrane means
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that we have eliminated the element and that we can proceed with the next
forbidden set – but before that we have to do several things.

First we eliminate, by means of the rules from (a.5), the remaining objects
fi, since to meet the cardinal maximality condition we do not eliminate any
other object of the forbidden set. This takes us to the following question: what
if the element eliminated also belonged to a forbidden set Bj not considered
yet? In that case the condition Bj �⊆ A is fulfilled, and we do not have to
eliminate any object from Bj . To control this from happening at the same
time as for the elements fi, we make a rotation of the subscripts of the objects
ei,j,l (representing the elements of the forbidden sets not considered yet) so
that they are always in correspondence with the objects fi (representing the
elements of the forbidden set being considered). The rotation is done to the
third subscript of the objects, using the rules from (a.6), while the two first
subscripts keep a record of which element it represented and which forbidden
set contained it. In this way, before passing to the next step of the main loop
we can “restore” the objects, by means of the rules from (a.7) and (a.8), and,
using the objects ai, we “memorize” which additional forbidden sets Bj satisfy
Bj �⊆ A by means of the rules from (a.9). Also, the rule from (a.10) uses the
object z to count how many of these sets satisfy the previous condition.

Note that when restoring the objects, as described above, the third sub-
script gets a value which exceeds by one what it should be. This is because
before continuing with the next step of the main loop we have to check if
the next forbidden set to consider is not included in A; that is, we have to
check for the existence of an object a1. If this is the case, the rule from (a.11)
skips that step, changing the polarization of the membrane to positive. We
can then restore again the objects ei,j,l, using the rules from (a.7) and (a.8),
and perform a rotation of the subscripts of the objects ai, using the rules from
(a.12).

To synchronize the finalization of this first stage in all the generated in-
ternal membranes, we use the objects gi as counters (rules from (a.13)). Since
the worst case lasts at most nm + m computation steps, when the rule from
(a.14) is applied introducing the objects c0 and neg, we can be sure that the
first stage has reached the end in all the internal membranes. The object neg
is then sent out to change the polarization of the membrane to negative (rule
from (a.15)), so that the second stage can start, before which we make a re-
naming of objects to obtain the ones that will be used in this stage (rules
from (a.17)).

A careful look at how the internal membranes are created by the rule
from (a.3) shows two things. The first one is that, when the element of the
forbidden set is eliminated (that is, in the membrane with positive charge), an
element s− is introduced. This object counts how many elements have been
eliminated. It is also possible to obtain an internal membrane where none of
the elements of the forbidden set being considered have been eliminated. In
this case, when the end of the first stage is reached in the membrane, there will
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be z objects left. The rule from (a.17) allows us to dissolve these disturbing
membranes.

The task of the second stage is to compute the cardinality of the subsets of
S that are associated with the internal membranes created in the first stage.
We have seen in the previous paragraph that the object s− (changed to S− in
this stage) represents the number of objects eliminated. On the other hand,
the object s+ (changed to S+ in this stage) represents the total cardinality of
the set S, and this is why this object has multiplicity n in the initial multiset
of the initial internal membrane. It is clear then that we have only to do
a subtraction. For that, the rules from (b.1) alternatively erase the objects
S− and S+. The latter can only be erased after the former has been erased.
Hence, we have only to wait 2n computation steps to get the result of the
subtraction. This is the purpose of the rules from (b.2), that use the objects
ci as counters. When the object c2n+1 appears, we can pass to the next stage,
so the rule from (b.3) introduces the initial counter for that stage, ch0, and an
object t that allows us to change the polarization of the membrane to neutral
(rule from (b.4)), which in turn allows us to rename the objects to obtain the
ones used in the third stage (rules from (b.5)).

To check if the cardinality of the subset is greater than or equal to k, we
check if it is greater than k − 1. This is why we keep k − 1 objects o (now
transformed to O) from the beginning of the computation. The rules from
(c.1) erase once and again an object S, changing the polarization to positive,
and an object O, changing the polarization back to neutral. If we wait 2k− 2
computation steps (this is done by the rules from (c.2) using the objects chi as
counters), the comparison is finished. If the final polarization is positive, then
the cardinality is greater than k − 1, so the rule from (c.3) sends an object
yes to the skin. Otherwise, what is sent is an object preno.

Finally, the output stage is very simple. We have only to be careful, looking
for the positive answers before looking for the negative ones. If there is an
object yes in the skin, it is sent out to the environment, the charge of the
skin membrane is changed to positive (rule from (d.1)), and the system halts.
If not, the objects preno are changed to objects no (rule from (d.2)) and one
of them is sent out to the environment, the charge of the skin membrane is
changed to negative (rule from (d.3)), and the system halts.

Now we are going to justify that the family Π = (Π(n, m, k))n,m,k∈N

solves CADP in polynomial time.
First, the above description of the system is computable in a uniform way.

It is also a polynomial description, since the size of the input alphabet is mn;
the size of the working alphabet is at most mn2 +4mn−m+3n+2k+18; the
size of the set of labels is 2; the number of membranes in the initial membrane
structure is 2; the maximum cardinality of the initial multisets is m + n + k;
the total number of evolution rules is at most 2mn2 + 8mn + 3m− 2n2 + n +
4k+23; and the maximum length of a rule is 7. Hence, the family Π is Turing
polynomially uniform.
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Second, the family Π is quadratically bounded, since, given an instance
u = (S, F, k) of the problem, the total number of steps performed by the
unique computation of the system Π(n, m, k), given the input cod(u), lasts at
most mn + m + 2n + 2k + 8 steps.

Third, from the description of the functioning of the P system Π(n, m, k)
it can be seen that the family Π is sound and complete.

6 Conclusions

The possibility of finding a systematic and suitable framework to address in an
efficient way the resolution of many practical problems that are presumably
intractable (unless P=NP) is studied in this chapter.

We consider P systems as recognizer devices. Solutions to NP-complete
problems are looked for in this framework by making use of appropriate fam-
ilies of P systems that can be constructed in a semi-uniform or uniform way.
In this chapter we have discussed the differences between these constructions,
and have presented a survey of the different solutions known in the current
literature of membrane systems. Also, we have described in some detail two
semi-uniform solutions, to SAT and HPP, and two uniform solutions, to the
Knapsack problem and the Common Algorithmic problem.
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14. C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Membrane Comput-
ing. International Workshop WMC2004, Tarragona, Spain, July 2003, Revised
Papers. LNCS 2933, Springer, Berlin, 2004,

15. A. Obtulowicz: Deterministic P Systems for Solving SAT Problem. Romanian
Journal of Information Science and Technology, 4, 1-2 (2001), 551–558.

16. A. Obtulowicz: On P Systems with Active Membranes: Solving the Integer Fac-
torization Problem in a Polynomial Time. In Multiset Processing. Mathematical,
Computer Science, and Molecular Computing Points of View (C.S. Calude, Gh.
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23. Gh. Păun: Computing with Membranes: Attacking NP-Complete Problems. In
Unconventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Din-
neen, eds.), Springer, London, 2000, 94–115.

24. Gh. Păun: P systems with Active Membranes: Attacking NP-Complete Prob-
lems. Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.
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LNCS 3113, Springer, Berlin, 2004, 235–249.
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Complejidad en Modelos de Computación con Membranas. Ed. Kronos, Sevilla,
2002.
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Summary. We introduce a general model for linguistics based on P systems, called

linguistic P systems (LPSs). Several applications of LPSs to linguistic issues are

suggested. Two variants of LPSs are developed: conversational P systems (CPSs)

and dynamic meaning P systems (DMPSs). The former type of systems are used

to provide a membrane computing approach to the analysis of conversational acts,

while the latter type offer a bio-inspired framework for dealing with semantics.

1 Introduction

The main goal of this chapter is to introduce a general model for dealing with
linguistic issues by means of P systems. In order to reach this goal we start
by defining a new variant of P systems, called linguistic P systems (LPSs),
adapted to the features that characterize the functioning of a natural language.

An early application of P systems to linguistics was proposed in [3]. The
most important intuition for translating this natural computing model to nat-
ural languages – mainly to semantics and pragmatics – is that membranes can
be understood as contexts. Contexts may be different words, persons, social
groups, historical periods, or languages. They can accept, reject, and produce
changes in elements they have inside. At the same time, contexts/membranes
and their rules evolve, that is, change, appear, vanish, etc. Therefore, mem-
branes, objects, and rules of the system are constantly interacting.

After introducing formal definitions of LPSs, we suggest several applica-
tions to different linguistic topics. Being a general framework with a high
degree of flexibility, LPSs can be adapted in order to deal with semantics,
language evolution, sociolinguistics, dialogue, anaphora resolution, etc. Space
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constraints prevent us from dealing with all these areas here. We focus our
attention on two of the possibilities, dialogue and lexical semantics.

Conversation has been tackled from very different points of view. Philoso-
phy, psychology, sociology, linguistics, cognitive science, artificial intelligence,
human-computer interaction, and software engineering have examined con-
versation from a variety of perspectives. One of the goals of this chapter is to
show the possibility of describing conversation by means of LPSs. What is im-
portant for our purposes is that P systems provide a powerful framework for
formalizing any kind of interaction, both among agents and between agents
and the environment. An important idea of P systems is that computation
is done by evolution, when the configuration of membranes undergoes some
modifications, given by certain rules. These rules generate elements inside the
membranes and may also perform some kind of evolution in the other mem-
branes, promoting, therefore, interaction between membranes. Membranes can
explain, simulate, and possibly predict how the elements involved in the com-
municative process are able to modify the structure and the meaning of the
message, and also how the message can create new contexts or transform those
which already exist.

In turn, formalizing semantics is one of the most challenging topics in
linguistics. By using P systems we try to introduce a new dynamic model for
semantics. Taking into account that P systems can be understood as evolving
systems, we consider that they may be a good framework for developing a
dynamic semantic model in the line of dynamic semantics [11] and dynamic
interpretation theory [4].

This chapter is the first attempt to construct a complex framework deal-
ing with the simulation of conversation and semantics by means of P systems.
Since this is an introductory work, we want only to set the model, giving some
general intuitions about how these systems can work when they are applied
to conversation and lexical semantics. In Section 2, by introducing linguistic
P systems, we show how P systems should be adapted to linguistics. In Sec-
tion 3, we suggest possible applications of LPS to linguistics. In Section 4, we
refer to some special features needed in order to use LPSs to describe conver-
sation, introduce the formal definition of conversational P systems (CPSs),
and provide examples of their functioning. In Section 5, by defining dynamic
meaning P systems (DMPSs), we apply LPSs to semantics, providing a P sys-
tems’ redefinition of some of the most important lexical semantic relations and
offering examples of them. We close the chapter with suggestions for further
investigations.

2 Linguistic P Systems

Differences between formal and natural languages are widely known. Among
them, we mention the following: a) the structure of natural languages is not
stable, and is always evolving; b) the words have a meaning, and the meaning
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is also evolving; c) the mechanisms of decodification are different depending
on the context, addresser, and addressee, that is, not only semantics but also
pragmatics must be taken into account.

As generative devices for formal languages, P systems do not consider the
problem of meaning; hence, in order to use P systems as linguistic models it
is necessary to supplement them with several features, which will lead us to
LPSs. The main distinctive features of these systems are:

• Introduction of domains, understood as sets of words, statements, ideas
and other linguistic units, a membrane is able to work with in a given state
of the computation. A domain is an active context. During a computation,
a membrane receives some elements which are accepted by its domain and
some which are not. We will explain below how the latter evolve.

• Introduction of several alphabets, a fact which can help explain the adap-
tation of one linguistic element from one context to another.

• Introduction of rules for adapting symbols traveling trough the mem-
branes.

• Description of ways of communication between membranes, related to the
fact that not everybody is able to communicate; there can exist people or
communities which are separated, non-communicating.

• LPSs are understood as completely evolving devices. Every feature of an
LPS can be changed during a computation: alphabets, domains, configu-
ration of membranes, rules, and relations between membranes.

2.1 Main Features

We deal in this section with important concepts for linguistic P systems,
as definitions of alphabets, domains, and adaptation of elements to different
membranes.

An LPS has one or more alphabets V1, V2, ..., Vn, which can change or evolve
during the computation. Then, each membrane has a domain, which specifies
the symbols it accepts. Domains are related to one or more alphabets, or
even to a single symbol. For example, given the alphabets V1 = {1, 2, 3}, V2 =
{a, b, c}, a domainDr assigned to a membraneMr can be defined as associated
with only one alphabet, for instance, Dr = V1, to both alphabets, Dr =
V1 ∪ V2, or as a set of symbols belonging to one or more alphabets, such as
Dr = {1, b, c}.

The domain of the skin membrane is the union of the domains of all its
internal membranes. Several membranes of the same system can have the same
domain.

During the computation, membranes can receive some elements which are
not in their domain. Then, there are two possibilities, to reject or to accept
them. The acceptance or rejection of these elements is given by what we call
the function of emigration, which establishes a correspondence between sym-
bols placed in different membranes or between symbols belonging to different
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alphabets, in a way that, in different places, the same symbol evolves into
another symbol.

If the function of emigration is established at the level of alphabets, then
the adaptation is independent of the membrane where the symbol is placed.
In this case, the function is given in the form h(Vi ↔ Vj) or h(Vi → Vj).
The symbol “↔” means that the function has the property of reciprocity.
Functions with reciprocity are called returning emigration rules. “→” means
that the function does not have the property of reciprocity. Functions without
reciprocity are called non-returning emigration rules.

For instance, consider two alphabets Vi = {a, b, c} and Vj = {α, β, γ}, and
three membranes, M1,M2, and M3, with the following domains: D1 = Vi,
D2 = Vj , and D3 = Vj . Then, the function of emigration may be h(Vi ↔ Vj)
= {a ↔ α, c ↔ γ}. Thus, every a will be adapted to α in M2 and M3, and
every α will be adapted to a in M1. On the other hand, b and β will be never
adapted, so they will be rejected if they are in a membrane whose domain
does not contain it.

If the function of emigration is established at the level of membranes, then
the adaptation will depend on the membrane where the element is. Such a
function is given in the form h(Mn ↔ Mm) or h(Mn → Mm). Continuing
the previous example, we can consider h(M1 → M2) = {a ↔ α, c ↔ γ} or
h(M1 →M3) = {b↔ β}. In this way, any a and c going from M1 to M2 will
be accepted and adapted, but the same symbols going to M3 will be rejected.
On the other hand, b can go just to M3 if it wants to be accepted; otherwise,
the symbol will be rejected. In this way, there is the possibility of playing with
the same symbols with different behavior, depending on the contexts.

Symbols which cannot be accepted in a membrane are called non-adapted
symbols. When arriving in a membrane where a symbol is not accepted, we
mark it by adding the subscript i. Elements marked in this way are not taken
into account in the output of the system when the evolution stops.

The linguistic meaning of domains and rules of emigration is intuitive as
well as versatile. One of the immediate referents which can be given to domains
are languages: English, Russian, Chinese, etc. But there are many possibilities
for interpreting domains. In general, the way domains are understood will give
rise to different applications of LPSs. If domains are related to several states
of a language, then it is possible to study language evolution. If domains are
different languages, then the interaction between them can be approached.
For domains that are contexts, semantics and pragmatics arise. For societies
or social groups, it seems sociolinguistics could be studied. Therefore, this is
a key point for a theory of linguistic P systems. In our approaches, the use
of domains, with the meanings we give to them, is the main point leading to
different applications of P systems.

Let us consider an example, understanding domains as languages. For
the sake of simplicity, such domains will be reduced. Let us imagine three
membranes M1, M2, and M3 with D1 = V1, D2 = V2, and D3 = V3, where
V1 = {correu, granota, neu}, V2 = {correo, caballo, rana}, and V3 = {chip,
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mail, tennis}. We see that M1 is a context for Catalan, M2 for Spanish, and
M3 for English.

We consider the following rules of emigration for these membranes:

h(M1 ↔M2) = {correuM1
↔ correoM2

, granotaM1
↔ ranaM2

},
h(M1 ↔M3) = {correuM1

↔ mailM3
},

h(M2 ↔M3) = {correoM2
↔ mailM3

}.

When the word correu in M1 is sent to M2 or M3, it is immediately
adapted to correo or mail. The same process is carried out when granota
is sent form M1 to M2, adapting it to rana. But the other words travelling
through membranes will not be adapted, because they are not part of the
domain and there is no rule to do that. They cannot be used in the other
membranes.

2.2 Evolution

LPSs have been defined as dynamical systems. They are able to evolve during
the computation in the same way as societies or languages are constantly
evolving. In the present section, we deal with evolution in different parts of
the system.

Evolution of alphabets. Alphabets may evolve during the computation,
mainly by means of processes of addition and deletion.

1. Addition of some symbols. The rule add {α} to V adds a new symbol,
α, to the alphabet V . In our example, add {mail} to V1 increases the
alphabet to V1 = {correu, granota, neu, mail}.

2. Deletion of some symbols. The rule del {a} from V removes the symbol
a from the alphabet. In our example, the rule del {correu} from V1

decreases the alphabet to V1 = {granota, neu, mail}.
3. Merging is the process by means of which two alphabets are put together.

The rule is written merg(Vi, Vj), and its result is the union of Vi and Vj .
4. Substitution is a process of addition and deletion. For substitution to take

place, it is necessary to have a rule of emigration between two symbols,
a ∈ Vi and α ∈ Vj , in a given membrane Mn. Thus, if Dn = Vj and there
exists the rule h(Vi ↔ Vj) = (aVi

↔ αVj
), then, when add {a} to Vj is

applied, del {α} from Vj is also performed. For the alphabets and the
rules of emigration given in Section 2.1, when the rule add {mail} to V1

is applied, correu is deleted; hence we get V1 = {mail, granota, neu} in
just one step.

Evolution of domains. If an alphabet is associated with a domain, when
an alphabet evolves, it entails the evolution of the domain. In this way, each
of the processes explained above is related to the evolution of a domain. But
domains may also evolve without modification in any alphabet. We mention
the following processes:
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• Addition of new alphabets to the domain. For example, for V2, V3 above
and Dn = V2, the rule add V3 to DMn has as a result Dn = V2 ∪ V3, that
is, Dn = {correo, caballo, rana, chip, mail, tennis}.

• Deletion of some alphabets from the domain. del V1 from Dn, applied to
Dn = V1 ∪ V2, has as a result Dn = V2. This is a process opposite to the
one in the previous rule.

By means of the rules given for evolution in alphabets and domains, it
is easy to explain language evolution, lexical substitution, creole and pid-
gin languages, and several sociolinguistic processes. For instance, bilingualism
corresponds to merging two alphabets.

Evolution of rules. We deal now with the procedure for achieving activation
or deactivation of rules. So far, we do not know how to create rules. Never-
theless we introduce here some very simple mechanisms which can help us
use in given moments certain rules which were inactive during most of the
computation. We distinguish two types of inactive rules:

1. Rules belonging to a membrane can use only the objects that the mem-
brane accepts as a domain. If a membrane has any rule with an element
that does not belong to its domain, then that rule becomes inactive. If the
membrane evolves during the computation and it accepts the necessary
element, then the rule is immediately activated.

2. Sleeping rules are well formed rules in a given membrane, which are in-
active until some element activates them. Sleeping rules are denoted by
σ. For example, there can exist a rule such that σrn : c → δ, but this
rule cannot be applied before being activated. There are several ways of
activating a sleeping rule (the symbol ς is used to denote the activation).

The first type of inactive rules do not need a special rule for activation,
because they become active when every element of them is in the domain of
the membrane they belong to. Adaptation of elements, evolution of domains,
changes in alphabets or creation of new symbols can help them become active.
For sleeping rules, an activation is necessary. We distinguish three ways to do
that:

1. The sleeping rule can be put into another rule which is active. For example,
having a sleeping rule σr5, we can write r1 : b→ abςr5c.

2. There can exist conditional rules; for instance, consider if δM3 → ςr5. In
this case, if M3 is deleted, then the rule σr5 is activated.

3. Finally, there can be a clock regulating the activation of some sleeping
rules. It can be programmed as a counter, so that after some rule or
set of rules has been applied several times, another one is activated. For
example, a counter cx can be considered that increases every time a rule
is applied in a system. Therefore, we can formulate, for instance, a rule
with the form rn : cx = 14→ ςr5 (rule r5 becomes active when cx = 14)

The same procedures may be used for deactivating a rule. The only differ-
ence is the adjunction of σ (the symbol of sleeping) instead of ς.
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New rules for activation or deactivation can be introduced, depending on
the field to which LPSs are applied, the elements intervening in the compu-
tation, and the mechanisms established for the symbols to travel through the
membranes. A good example is given by lexical substitution. In that frame-
work, when a complete domain has been replaced by another one, it is normal
that some rules related to the syntactical level of the second domain are acti-
vated in order to deal with the new words.

2.3 Structural Relations Between Membranes

The study of the possibilities of relation, interaction, and communication be-
tween membranes, as well as the rules that can regulate them is another
interesting aspect of LPSs. For linguistics, it is very important what hap-
pens with contexts, because most of the time they have a strong influence on
the evolution of languages. For instance, we can express the fragmentation
of Latin that gave rise to romance languages as a partition of a membrane
which generated several different contexts for words and syntax. This is just
an example, but many analogies can be made with the connection and the in-
teraction of contexts in order to get a specific result in communication. In the
sequel to this discussion, we deal with three important aspects of the theory
of LPSs: a) structural relations between membranes (Section 2.3), b) commu-
nication among them (Section 2.4), and c) rules for interaction in membranes
(Section 2.5).

We start by examining the possible types of structural relation between
membranes in a system. The way the membranes are related is important when
they have to interact, and also in the configuration of the communication we
are going to deal with later. In what follows, two types of relations are of
direct interest: nesting and sibling.

Given two membranes M1 and M2, it is said that M2 is nested in M1 if it
is placed inside M1. The outer membrane M1 is called parent membrane and
the inner membrane M2 is called nested membrane. We denote this relation
by M2 ⊂M1. The set of all membranes nested in M1 is denoted by ⊂M1.
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Fig. 1. M2 ⊂ M1 with degree 1, 2, and 3.

Nesting is a strict order, as it is non-reflexive, asymmetric, and transitive.
The degree of nesting refers to the number of membranes between the

nested one and the parent. Figure 1 illustrates this idea.
Two membranes Mn and Mm are related by sibling if they are adjacent to

each other or nested in adjacent membranes and have the same depth. Sibling
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is denoted Mn ≈ Mm. The notion is illustrated in Figure 2. The set of all
sibling membranes for Mn is denoted by ≈Mn.
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Fig. 2. Sibling.

The sibling is reflexive, symmetric, and transitive; hence it is an equiva-
lence relation.

The degree of sibling refers to the proximity of two membranes related by
sibling:

• Two membranes are siblings of degree 0 when they have the same direct
parent membrane.

• For two sibling membranes Mn ≈Mm which are not of degree 0 we obtain
the degree of sibling by subtracting from the depth of Mn and Mm (they
have the same depth) the depth of Mi and Mj , where Mi, Mj are two
membranes such that Mi ≈ Mj with degree 0, and Mn ⊂Mi, Mm ⊂Mj .

An illustration is given in Figure 3.
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Fig. 3. M1 ≈ M2 with degree 0 and 1.

2.4 Communication Between Membranes

This is a feature of LPSs which is connected to scenarios possible in real life. If
we understand membranes as languages, it is obvious that some languages are
closely connected, that there is a strong interaction between them. An example
may be Spanish and English in the USA. If membranes are understood as
social groups, conditions of marginality may be modeled by means of the non-
connection (isolation) between a specific group and the others. If membranes
refer to different agents in a dialogue, then it is easy to find agents which do not
participate, while some others keep the attention all the time. These concepts
can be approached by means of the description of the types of communication
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for membranes. In a preliminary approach, three states in communication are
established: connection, isolation, and inhibition.
Connection is the situation in which communication channels are open, that
is, membranes can interact and exchange elements.

The main features and notions related to connection are the following:

• Two membranes are connected when the communication channel between
them is open (we denote this by ¯).

• By definition, the skin membrane is connected with every membrane in
the system.

• A membrane Mn is connected when it is connected with every membrane
in the system (we denote this by ¯Mn).

• A membrane is semi-connected when it has at least one of its channels
open and it has at least one of its channels closed.

• A system is called supra-connected when every communication channel is
open (we denote this by ¯µ).

Clearly, connection is reflexive and symmetric, but not necessarily transi-
tive.

By definition, two membranes related by nesting are connected. Moreover,
if Mn ≈Mm and Mn ¯Mm, then Mn¯ (⊂Mm) and Mm¯ (⊂Mn).

When we define a system, if nothing is said about connection, then it is
supposed that every membrane is connected.

Isolation refers to the situation where the communication between two mem-
branes is not established, but is possible. Its main features and definitions are
as follows:

• Two membranes are isolated when the communication channel between
them is closed (we denote this by ⊗).

• Closed communication channels can be opened by means of some rules
while the system works.

• A membrane Mn is isolated when the communication with every mem-
brane in the system is closed (we denote this by ⊗Mn).

• A system is called supra-isolated when every communication channel is
closed. Supra-isolation is denoted by ⊗µ.

The isolation is a non-reflexive and symmetric, but not necessarily a tran-
sitive, relation.

For two membranes Mn and Mm, if Mn⊗Mm, then Mn⊗ (⊂ Mm) and
Mm⊗ (⊂Mn).

Inhibition is the state of complete and irreversible isolation, and has the
following main features:

• Two membranes are inhibited when the communication between them is
closed, and there is no rule in the system for opening it (we denote this
by ®).
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• A membrane Mn is inhibited when every communication channel is closed
to it, and it cannot be opened (we denote this by ®Mn).

• A system is supra-inhibited when every membrane in it is inhibited (we
denote this by ®).

• In inhibited systems the skin cannot communicate with membranes inside
the system, and no evolution is possible.

The inhibition is a non-reflexive and symmetric, but not necessarily a
transitive, relation.

For two membranes Mn and Mm such that Mn ≈Mm, if Mn ®Mm, then
Mn ® (⊂Mm) and Mm ® (⊂Mn).

2.5 Operations with Membranes

During the evolution, the structure of P systems, which is dynamic by defini-
tion, can undergo several variations. For instance, some contexts can disappear
or are extended during the progress of the conversation; others can merge, or
can be copied many times. We consider here several types of rules for handling
the membranes of a P system.

Deletion. By means of deletion, a membrane is dissolved and its elements
go to the membrane immediately above. These elements will be accepted or
rejected according to the configuration of the parent membrane. The rule for
deleting a membrane Mn is written as δMn, and its effect is [ δ[ u]n]m → [ u]m.
Erasing is the operation by which a membrane completely disappears, to-
gether with all its elements. The rule is written as ηMn, and its effect is
[ η[ u]n]m → [ ]m.
Extraction is the operation by which a membrane nested in another one
is extracted, such that they become related by sibling of degree 0 in the
resulting configuration. It is denoted by ∇Mn and the effect is [ [ ∇[u]n ]m ]→
[ [ ]m[u]n ].
Exchange is the operation by which two membranes exchange their elements,
but not their domains. It is denoted by Mn Mm.

2.6 Formalizing LPSs

A linguistic P system (LPS) is a 5-tuple Π = (µ,V,M,H,R), where:

1. µ is the membrane structure,
2. V is the set of alphabets associated with each membrane,
3. M is the initial configuration of each membrane (a configuration is a

triple specifying the domain, the elements present in the membrane, and
its communication state),

4. H is the set of emigration functions in the system,
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5. R = R ∪ V R ∪DR ∪ AR ∪MR is the set of rules, where R is the set of
evolution rules for objects, V R is the set of rules for evolving alphabets,
DR is the set of rules for domains, AR is the set of rules for activation or
deactivation of sleeping rules, and MR is the set of rules for membranes.

So far, our purpose has been to provide a general framework for dealing
with linguistics. In the next section, we will present some possible applications,
and we will enter into details for some of them. The general definition we
have just given should be adapted to each part of linguistics, depending on
the requirements of each concrete application.

3 Possible Applications of LPSs to Linguistics

The general definition of LPS that has been given above provides a general
framework which allows the treatment of most of linguistic disciplines. How-
ever, some aspects must be adjusted in the general description for them to be
adequate for each field.

Domains Elements Turn-taking Output

Semantics Contexts Linguemes No Membranes

Lang. evolution Languages Lgc. units No Membranes

Sociolinguistics Social groups Lgc. units No Membranes

Dialogue Competence Speech Acts Yes CR

Anaphora resol. Contexts Anaphores No Output Memb.

Table 1. Features of several applications of LPSs in linguistics.

As we show in Table 1, thanks to the flexibility of their formalization,
LPSs can be adapted to deal with different aspects of linguistics. The first
differencing feature are the domains. When they are contexts, LPSs are to a
large extent suitable for semantics and pragmatics. Within the same frame-
work, anaphora resolution, which is a syntactical and pragmatical problem,
can also be approached. When domains are languages, language evolution
and languages interaction can be studied. For approaching sociolinguistics, a
good idea is to take domains as social groups. Finally, for dialogue we suggest
understanding the domain as the personal background (education, context,
knowledge of the world) of the agent, which is the membrane.

Among the different suggested interpretations, we see that dialogue is the
field able to be formalized without domains and with the use of more than one
alphabet. Dialogue is also the only area which does not always need operations
with membranes, although it always needs some kind of interaction between
them.

In the present chapter, we cannot deal with every one of these disciplines,
but we will discuss a very preliminary approach to dialogue and a foundation
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of semantics from the perspective of P systems. Both aspects are treated here
for the first time in such a bio-inspired framework. The development of the
other aspects of linguistics we have suggested in Table 1, as well as other
syntactical concepts, remains a task for the future.

4 Applying LPSs to Dialogue

Motivation. In the present section we suggest an approach to dialogue by
means of P systems. It is widely known that this framework provides a pow-
erful tool for formalizing any kind of interaction, both among agents and
between agents and the environment. We have already emphasized that one
of key ideas of P systems is that computation is done by evolution, when the
configuration of membranes undergoes some modifications, given by certain
rules. Therefore, most evolving systems can be formalized by means of P sys-
tems. In linguistics, we think P systems are quite suitable for dealing with
some fields where contexts, and mainly evolving contexts, are a central part
of the theory. Such an approach is especially suitable in the study of semantics
and pragmatics. Morris [21] defined pragmatics as the science of the relation
between signs and interpreters. A different definition, given by Katz and Fodor
[9], refers to disambiguation of utterances depending on the contexts in which
they are produced. The final results of sentences after the process of disam-
biguation, taking into account the intention of the speaker, are speech acts.
The theory of speech acts was introduced by Austin [2] and Searle [26], and
is now the central theory of pragmatics and human communication.

In what follows, our purpose is to compute speech acts by means of P
systems, that is, to generate the final product of interaction in human com-
munication.

4.1 A Theoretical Framework for Dialogue

In this section we follow three goals: a) to introduce the concept of act, b)
to classify the agents participating in dialogue, and c) to offer a taxonomy of
types of conversation.

A speech act may, by definition, be a communication act whose final mean-
ing is related not only to syntax but also to the illocutionary strength of the
speaker.

Speech acts are not only the central topic of pragmatics, but also have an
increasing importance in dialogue games [5], which are an attempt to start a
formal study of pragmatic situations. Combining both theories, and adapting
their main concepts to a computational description, we propose to distinguish
the following types of acts in human communication: Query-yn, Query-w,
Answer-y, Answer-n, Answer-w, Agree, Reject, Prescription, Explain, Clarify,
and Exclamation. The list includes the most usual acts, and may be modified
at any time depending on the convenience and accuracy of the theory.
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Acts are usually gathered in topics during the conversation, even if it is
not a task-oriented one. From here we infer the existence of structural acts in
order to indicate the beginning and the end of the goal, and also the change
of topic. Therefore, we add the sequences Open, Close, and Changetopic to
the list given above.

Structural acts are in some way different from the others. Open is the first
act, or at least the first instruction, in every dialogue or human interaction.
However, the act Close is not always present in the same way that many times
topics are not closed in conversations, and new ones arise without an ending to
the previous ones. On the other hand, Changetopic is a sequence of transitions
which cannot be applied to and replied to by every agent. Nevertheless, these
concepts have to be accommodated due to the diversity of realistic situations,
which may be quite unexpected.

Several classifications of dialogue have been introduced which can be use-
ful also in the framework of P systems. The most classical distinction in com-
putational dialogues is the one established between task-oriented (TO) and
non-task-oriented (NTO), based on the cooperation of participants in the con-
secution of conversational goals. The distinction between TO and NTO can
be drawn as follows:

• In task-oriented (TO) dialogues, (1) agents collaborate, (2) there exist
conversational goals, and (3) the opening and termination are defined.

• In non task-oriented (NTO) dialogues, (1) agents coact, but they do not
necessarily collaborate, (2) there are no conversational goals or, if they ex-
ist, they are private, and (3) the opening and termination are not defined.

Besides the above classification, Clark provides in [6] an interesting picture,
which includes the following items:

1. Personal Settings: Conversations may be devoted to gossip, business trans-
actions, or scientific matters, but they are all characterized by the free
exchange of turns among the two or more participants.

2. Institutional Settings: The participants engage in speech exchanges that
resemble ordinary conversation, but are limited by institutional rules. In
these settings, what is said is more or less spontaneous even though turns
at speaking are allocated by a leader, or are restricted in other ways (e.g.,
a lawyer interrogating a witness in court).

3. Prescriptive Settings: In contrast with the previous item, there may be
exchanges, but the words actually spoken are completely, or largely, fixed
beforehand. Prescriptive settings can be viewed as a subset of institutional
settings (e.g., church, basketball referee calling foul).

We think that prescriptive settings are included in institutional settings,
although they have some special features. Indeed, the main characterization
is the same for both types. From here, we finally obtain:
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1. Personal settings. They define a type of dialogue characterized by:
• random or not established turn taking,
• there being no moderator or distributor.

2. Institutional settings. They have the following features:
• well established turn taking, even if it looks like normal conversations,
• the possibility of existence of a moderator or distributor,
• the inclusion of prescriptive settings, a type of institutional settings

where what is to be said is established before starting the dialogue.

Now, taking into account the characterization of institutional and personal
settings, besides features of TO and NTO dialogues, it is possible to combine
the main traits of both systems as in Table 2.

SETTINGS TO TURN-TAKING DISTRIBUTED

Personal (N)TO free or random no

Institutional TO non-free yes

Table 2. Comparing personal and institutional settings.

The table above allows trying a distinction of three types of dialogues,
which can be named primary, oriented, and formal. Their characteristics are
shown in Table 3.

TYPE SETTINGS TASKS TURN-TAKING DISTRIBUTED

PRIMARY Personal NTO free no

ORIENTED Personal TO free no

FORMAL Institutional TO non-free yes

Table 3. Structural types of dialogues.

The degree of institutionalization is increasing from primary to institu-
tional. This means we need more rules and established protocols for construct-
ing the last type of dialogue. On the other hand, the complexity of description
and formalization, as well as the computational complexity, is decreasing from
primary to institutional dialogues.

An important distinction for our purposes has already been established.
The next step is to give another relevant classification for dealing with di-
alogues, which has been developed in the framework of multi-agent theory
and refers mainly to a perlocutive taxonomy of conversation. It is the one
introduced by Walton and Krabbe [27] and Reed and Long [24]. According to
these authors, it is possible to distinguish five classes of dialogue belonging
to the TO group that can hence be included in both groups, oriented and
formal. We give the distinctive features of each one of them, gathered in a)
initial situation, b) goal of dialogue, and c) participants’ aim, according to
the description made in [1]:
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1. Persuasion:
a. Initial situation: conflicting points of view.
b. Main goal: resolve conflicts by verbal means.
c. Participants’ aim: persuade the other(s).

2. Negotiation:
a. Initial situation: need for action.
b. Main goal: reach a decision.
c. Participants’s aim: influence the outcome.

3. Inquiry:
a. Initial situation: general ignorance.
b. Main goal: grow knowledge and agreement.
c. Participants’s aim: find a proof or refute one.

4. Deliberation:
a. Initial situation: conflicting interests and need for cooperation.
b. Main goal: make a deal.
c. Participants’s aim: get the best deal for oneself.

5. Information Seeking:
a. Initial situation: personal ignorance.
b. Main goal: spread knowledge and reveal positions.
c. Participants’ aim: gain, pass on, show, or hide personal knowledge.

From what we have explained throughout this section, we propose a final
distribution of dialogues as shown in Figure 4.

The first group, the personal non-tasks-oriented non-distributed dialogues,
called primary, depend exclusively on the creativity of participants. From gos-
sip to scatology, everything is accepted. They are the common conversations
in the street, between friends, at home. In oriented dialogues, which are also
personal, non-distributed, and task oriented, agents have a goal to reach. Ask-
ing an address in the street, giving advice, trying to convince some person,
and meetings or scientific discussions belong to this group. Finally, formal
dialogues correspond to situations with a well established structure, namely,
trials, liturgy, interrogations, or several types of formal academic interaction.

Figure 4 graphically shows that, while TO dialogues, namely, oriented and
formal ones, can be divided into smaller units, depending on the goals they
have, it is not possible to try a similar classification for primary dialogues.

In the next section, we will formalize a conversational P system (CPS),
which aims to provide a general framework for dealing with every kind of
dialogue.

4.2 From LPSs to CPSs

For adapting P systems to the generation of human interaction so as to obtain
a conversational P system (CPS), we need to do some adjusting, concerning
mainly the following aspects:
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Fig. 4. Types of dialogues.

1. configuration of alphabets;
2. domains;
3. the turn-taking protocol T ;
4. halting criteria;
5. the output configuration.

Configuration of alphabets. The main elements of CPS are speech acts
which are gathered as several types, following the classification given above.
Each of these types is considered to be an alphabet, even if, more than
an alphabet, it is a stack of elements. Indeed, each element of the al-
phabet, that is, each speech act, can be used just once during the com-
putation. When it is used, it is deleted from the alphabet, the way el-
ements are deleted from a stack. We define a maximal set of alphabets
V = {ω,#, κ′, κ, αy, αn, α, γ, ϕ, τ, ε, λ, ξ}, where every element is a set of
speech acts, as follows:

ω = {o1, o2, . . . , ok}, speech acts of type open.
# = {#1,#2, . . . ,#k}, speech acts of type close.
κ′ = {q′1, q

′

2, . . . , q
′

k}, speech acts of type query-yn.
κ = {q1, q2, . . . , qk}, speech acts of type query.
αy = {ay

1, a
y
2 , . . . , a

y
k}, speech acts of type answer-y.

αn = {an
1 , a

n
2 , . . . , a

n
k}, speech acts of type answer-n.

α = {a1, a2, . . . , ak}, speech acts of type answer-q.
γ = {g1, g2, . . . , gk}, speech acts of type agree.
ϕ = {f1, f2, . . . , fk}, speech acts of type reject.
π = {p1, p2, . . . , pk}, speech acts of type prescription.
ε = {e1, e2, . . . , ek}, speech acts of type explain.
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λ = {l1, l2, . . . , lk}, speech acts of type clarify.
ξ = {x1, x2, . . . , xk}, speech acts of type exclamation.

Domains. In CPS, the domain of a membrane is related to the competence
of an agent in a dialogue, that is, what the agent knows and can say. It is
defined as the set of speech acts from V that every membrane is able to utter
or understand. It can include entire sets of acts defined for the system or just
single acts coming from some set.
Turn-taking protocol. We distinguish three types of dialogues: primary,
oriented, and formal. We have established for them two types of turn-taking,
free and non-free. Free turn-taking is related to primary and oriented dialogue,
whereas non-free turn-taking is related to formal dialogue.

In what concerns the free turn-taking protocol for primary and oriented
dialogues, we assume that it is given as a set of active elements, at the be-
ginning of the computation. Every turn is distributed by the agent that is
talking. When someone asks, explains, or clarifies something, he/she does it
to someone among the others. Therefore, we assume that the addresser in each
turn can choose the next speaker. The way to do that is through the turn-
taking rule included at the end of each rule of the system. This is denoted
by a symbol related to the speech act uttered in the rule. We consider the
following turn-taking symbols: O (open), # (close), Q′ (Query-yn), Q (Query-
w), Ay (Answer-y), An (Answer-n), A (Answer-q), G (Agree), F (Reject), P
(Prescription), E (Explain), L (Clarify), X (Exclamation). To these symbols,
we add H for “Changetopic,” which is not related to any set of speech acts,
because any type (except Answer) can follow it.

Every rule in the system has on the left hand side the indication of the
turn-taking, and on the right hand side the reply to the explicit invitation
to talk, and the agent, if it exists, to whom the speech act is addressed. The
turn-taking allows applying just one rule.

In the case when no indication of turn is given in a rule, the turn goes to
every agent/membrane able to reply, that is, every membrane containing a
rule with the given turn on the left hand side. If there are several membranes
able to act, then the turn is indicated by the number of the membrane, that
is, M1 precedes M2, which precedes M3, and so on.

As for the non-free turn-taking protocol for formal dialogues, we have to
say the following:

• The starting membrane is the skin membrane. In every initial configuration
of a CPS, the skin membrane has at least one element and the other
membranes are empty. This means that the first rule is always applied to
this membrane. The initial step is not part of the turn-taking protocol.

• The protocol T is a sequence of membranes establishing the turn-taking.
No restrictions are applied to this sequence, and T = {1n} is forbidden
because it does not generate anything, since the skin membrane is not an
output membrane.
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• If a membrane of the sequence cannot participate, the next one takes its
turn.

• If the skin membrane is in the T sequence, the system is called distributed;
otherwise is is called non-distributed.

• The turn in the sequence allows a membrane to apply just one rule. If the
application of a given rule implies some transformations in the system,
they are carried out automatically; but the membrane cannot participate
again.

Referring to the halting criteria, we establish that the system stops if:

1. No rule can be applied in any membrane.
2. Just one membrane remains in the system.
3. No more acts are available.

Configuration of the output.

• CPSs are not final step systems; therefore, the configuration obtained in
every step is stored in a configuration register (CR), and the final result
gives account of the situation in each configuration.

• The last result obtained and the membrane or membranes still active are
stored as a special output of the system in the last register of the CR called
FC (final configuration).

• CPSs do not have output membranes. For the configuration of the output,
we define the generation register (GR), which gives account of the changes
in the configuration of the system in every step. The examples we will
discuss below will clarify these notions.

4.3 Defining a CPS

If we take into account all the above necessary elements in order to apply
LPS to conversation and formalize them, what we obtain is a conversational
P systems that can be defined as constructs Π = (µ,U ,M, T ,R), where:

– µ is the membrane structure,
– U ⊆ V is the set of alphabets associated with the types of speech acts,
– M indicates the initial configuration of each membrane, specifying the

set of speech acts associated with the membrane, the domain D of the
membrane, the state C of communication channels of the membrane, and
an element T of T for free turn-taking systems,

– T is the configuration of turn-taking, given by a set of act distributors
in primary and oriented dialogues, and by a sequence in institutional dia-
logues,

– R = R ∪ V R ∪DR ∪ AR ∪MR is the set of rules, where R is the set of
evolution rules for objects, V R is the set of rules for alphabets, DR is the
set of rules for domains, AR is the set of rules for activation or deactivation
of sleeping rules, and MR is the set of rules for membranes.
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Notice that the concept of a membrane configuration is different in CPSs
with respect to LPSs. Besides the set of acts, the membranes of a CPS contain
the domain and the state of the communication channels in a given state, and
the possible turn-taking configuration for the membrane if the CPS has free
turn-taking.

Now, we have a general framework for dealing with dialogue. Usually, for
primary dialogue no more adaptations will be necessary, but for TO dialogues
most of the situations require special definitions.

In the sequel, we will search for some general laws for oriented dialogues
and will give some examples of how primary dialogue develops in real life,
in the way theatre can be (or, at least, simulate) real life. Formal dialogues,
with preestablished and deterministic structures, will not be considered in this
chapter.

4.4 Some Particular Cases of CPSs for Oriented Dialogues

In this section, we adapt CPSs to each of the five types of oriented dialogue
considered in [27]: inquiry, information seeking, deliberation, persuasion, and
negotiation.

Oriented dialogues are a) personal, b) task oriented, c) free turn-taking
structures, and d) non-distributed. Hence, for applying general CPSs to them,
we have to take into account that (i) the turn-taking is free, (ii) the acts Open,
Close, and Changetopic are present, by definition, in V, and (iii) there is a
final goal. If the goal is achieved, then the system stops. If the system stops
before reaching the goal, then it is not correctly defined.

Taking into account the traits of initial situation, main goal, and partic-
ipants aim, explained in [1], we think it is possible to gather the five types
of oriented dialogues in two groups: Dialogues devoted to spread knowledge
(inquiry and information seeking), and dialogues aimed to reach agreements
(deliberation, persuasion, and negotiation).

From here, we establish two main characterizations in CPS for ori-
ented dialogues corresponding to spreading knowledge conversational P sys-
tems, SKCPSs for short, and reaching agreements conversational P systems,
RACPSs for short.

SKCPSs start from a situation of ignorance and end in a state of increasing
knowledge. We think the best way of modeling the process is the extension of
membrane domains, with ignorance indicated by Dn = ∅. Within this general
scenario, two main differences should be pointed out between inquiry and
information seeking:

• Inquiry starts from general ignorance, whereas in information seeking the
situation affects only one agent of the dialogue.

• In inquiry, every agent collaborates in reaching a solution, whereas in in-
formation seeking, the non-ignorant agent(s) may have the personal goal
of showing or hiding information.
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Taking into account these differences, we propose two different definitions
of SKCPSs for inquiry and information seeking.

In the first case, that of inquiry, we have to take into account the following
facts:

• In the starting configuration, which is general ignorance, every element
participating in the “process of inquiry” has an empty domain.

• There is a final goal, defined by the situation in which a given symbol is
accepted by every membrane.

• Communication channels are always open, because every agent collabo-
rates in the search for knowledge. Therefore, the communication state is
not specified.

Thus, formalization of inquiry should include a new element, the final
goal, while some of the components of a CPS must be reformulated, obtaining
a system of the form Π = (µ,U ,M, T , G,R), where all components are as
in a general CPS, with the following differences: U includes the alphabet
{O,C,H}, every domain is ∅, T is a set of act distributors, and G is the final
goal, applied to every agent.

The process for obtaining an information seeking SKCPS is the same as
for inquiry. The specific features of the system are now the following:

• In the starting configuration, the domain of the membrane that is seeking
information is empty.

• There is a final goal, defined by the situation in which a given symbol, al-
ready present in the system, but not in the configuration of the “ignorant”
membrane, is accepted by the membrane seeking information.

• Agents which are providers of information may have several behaviors,
more or less collaborative, which can be modeled by rules or by different
communication states.

Thus, information seeking not only needs a goal, like inquiry, but also
needs an output membrane, because the agent trying to get the information
is unique. In this way, a new element has been added, which is not common
in LPSs. We also recall that the membranes which are not searching do not
necessarily have to collaborate, which means that the state of communication
channels must be reported.

The definition of the system may be Π = (µ,U ,M, T , iO, G,R), where the
components are the same as in a general CPS, with the following differences:
{O,C,H} ∈ U , iO is the output membrane, and G is the final goal, which the
output membrane iO has to reach.

RACPSs differ from SKCGSs in the initial situation, the main goal, and
the participants’ goals; hence they are different types of oriented dialogue.
However, deliberation, persuasion, and negotiation are very similar types of
dialogue due to the fact that they all look for a final agreement where one
of the agents takes advantage of the others, with different personal aims, but
with the same result. The main difference appears in the initial situation:
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while persuasion and deliberation have an initial conflict, such a feature may
or may not appear in negotiation.

From the formal point of view, deliberation and persuasion are, thus, very
similar. The difference, clearly, is the attitude of agents. Whereas deliberation
is a collaborative dialogue, persuasion is only a coaction. This feature is related
to the presence of information about the state of communication channels in
the system. As this is the only formal distinction between the two types of
conversation, we think it is possible to define only one model for both dialogues
(we are not saying that persuasion and deliberation are the same, but only
that they can be formalized in the same way).

Therefore, we will define two kinds of devices for three different dialogues.
Deliberation and persuasion have two explicit features: a) it is necessary

to formalize an initial conflict; the best way to do this seems to be to de-
scribe membranes with disjoint domains; and b) the final goal is given by
the influence of one of the agents, which is able to impose its arguments. We
introduce, then, a winner W , which is the membrane to which the element
accepted by the other domains belongs. Because this is an essential element,
we introduce it in the definition of the system, but the winner is decided by
the configuration register, CR, looking at the final configuration, FC.

The state of communication channels is reported because, although in de-
liberation it seems every communication channel should be open, it is not clear
for persuasion, where some agents can isolate themselves to not be influenced
by the others.

Thus, a deliberation and persuasion RACPS has to be written as Π =
(µ,U ,M, T , G,W,R), where all components are as above, G is the final goal
defined by D1 ∩D2 ∩ . . . ∩Dn = ∅, and W is the winner.

In negotiation, the initial configuration of membranes is not given, that is,
empty domains or disjoint domains could exist, but they are not compulsory
for the definition of the system. On the other hand, the main goal is to reach an
agreement shared by every agent. This is why it must exist as a goal achieved
by every membrane for the system to be successful. From here, the definition
of the negotiation RACPS is Π = (µ,U ,M, T , G,R), where all components
are as above, with G being the final goal of the system, reached by every
membrane.

We illustrate below these very general models with examples from the
literature.

4.5 An Example of a CPS Generating a Primary Dialogue

In this section we will describe a scene from Shakespeare’s play The Comedy of
Errors, Act 4, Scene 4. The structure is quite complex, because of the number
of the agents that participate as well as the functioning of the turn-taking,
which is not always well established.
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The system we need in order to generate this dialogue is the following:

Π = (µ,U ,M, T ,R),

where:

µ = [0 [1 ]1 [2 ]2 [3 ]3 [4 ]4 [5 ]5 [6 ]6 ]0,
U = {κ, α, ε, τ, ξ}, where
κ = {q1 : wherefore dost thou mad me?,

q2 : Will you be bound for nothing?,
q3 : Say now, whose suit is he arrested at?,
q4 : do you know him?,
q5 : What is the sum he owes?,
q6 : Say, how grows it due?},

α = {a1 : One Angelo, a goldsmith:,
a2 : I know the man.,
a3 : Two hundred ducats.,
a4 : Due for a chain your husband had of him.},

ε = {e1 : Master, I am here entered in bond for you.},
π = {p1 : Out on thee, villain!,

p2 : be mad, good master: cry ‘The devil!’,
p3 : Go bear him hence. Sister, go you with me.},

ξ = {x1 : O most unhappy day!,
x2 : O most unhappy strumpet!,
x3 : God help, poor souls, how idly do they talk!},

M = {M1,M2,M3,M4,M5,M6}, where
M1 =(κ ∪ α ∪ π ∪ ξ,¯, O),
M2 = (κ ∪ π ∪ ξ,¯),
M3 = (κ ∪ ε ∪ π,¯),
M4 = (ξ,¯),
M5 = (α ∪ {q4},¯),
M6 = (ξ,¯).
T = {Q,A,E, P,X,CH}.
R = R1 ∪R2 ∪R3 ∪R4 ∪R5, where
R1 = {r1 : O → x,X, r2 : Q→ aq,Q5,

r3 : X → p ¯ (2, 3, 6) q,Q5, r4 : A→ q,Q5},
R2 = {r1 : X → x,CH, r2 : E → pq,Q3},
R3 = {r1 : H → e,E2, r2 : Q→ qp, P4, r3 : A→ c, C2},
R4 = {r1 : P → x,X1},
R5 = {r1 : Q→ aq,Q1, r2 : Q→ a,A1}.

The system starts with every agent connected, even if one of them, M6,
has no possibility of intervening in the dialogue because it has no rule to ap-
ply. After the first step, the turn-taking is not addressed to any membrane, so
it goes to any one that has a rule with X to the left (M2 and M4). Because
of the rule of precedence, M2 is the next one to play. The situation is similar
in the next step, where Changetopic is not defined. But in this case, the only
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membrane able to reply is M3. The computation goes on and, at a given mo-
ment, the application of the rule r3 from R1 inhibits three of the membranes,
which exit from the scene. Figure 5 shows the configurations of the system.

The system stops because there is no act in the stack for replacing A with
an act in M1. The record of the system evolution is given in Table 4.

C0 : [O]1

C1 : [x1]1, [X]2, [X]4,

C2 : [x1]1, [x2]2, [CH]3,

C3 : [x1]1, [x2E]2, [e1]3,

C4 : [x1]1, [x2p1q1]2, [e1Q]3,

C5 : [x1]1, [x2p1q1]2, [e1q2p2]3, [P ]4,

C6 : [x1]1, [x2p1q1]2, [e1q2p2]3, [x3]4,

C7 : [x1p3q3]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [Q]5, ®[ ]6

C8 : [x1p3q3Q]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [a1q4]5,

C9 : [x1p3q3a2q5]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [a1q4Q]5,

C10 : [x1p3q3a2q5A]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [a1q4a]5,

C11 : [x1p3q3a2q5q6]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [a1q4a3Q]5,

C12 : [x1p3q3a2q5q6A]1, ®[x2p1q1]2, ®[e1q2p2]3, [x3]4, [a1q4a3a4]5,

Table 4. Configuration register.

In order to know the final result of the system it is necessary to go to the
generation register, represented in Table 5.

C0 : [O]1 ¯µ

C1 : [x]1, [X]2, [X]4, [X]6

C2 : [x]2, [CH]3, [CH]4, [CH]5, [CH]6

C3 : [E]2, [e1]3,

C4 : [t1q1]2, [Q]3,

C5 : [q2t2]3, [T ]4,

C6 : [X]1, [x3]4

C7 : [t3]1, ®[ ]2, ®[ ]3, ®[ ]6

[q3]1, [Q]5,

C8 : [Q]1, [a1q4]5

C9 : [a2q5]1, [Q]5

C10 : [A]1, [a3]5,

C11 : [q6]1, [Q]5

C12 : [A]1, [a4]5,

Table 5. Generation register.
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Finally, substituting M1 by Adriana, M2 by Antipholus, M3 by Dromio,
M4 by Luciana, M5 by Officer, and M6 Courtezan, the result is:

Adriana: O most unhappy day!
Antipholus: O most unhappy strumpet!
Dromio: Master, I am here entered in bond for you.
Antipholus: Out on thee, villain! wherefore dost thou mad me?
Dromio: Will you be bound for nothing? be mad, good master: cry ‘The
devil!’
Luciana: God help, poor souls, how idly do they talk!
Adriana: Go bear him hence. Sister, go you with me.
Exeunt all but Adriana, Luciana, Officer, and Courtezan.
Say now, whose suit is he arrested at?
Officer: One Angelo, a goldsmith: do you know him?
Adriana: I know the man. What is the sum he owes?
Officer: Two hundred ducats.
Adriana: Say, how grows it due?
Officer: Due for a chain your husband had of him.

4.6 Some Suggestions for Future Research

Even if a lot of work is yet to be done in this direction, we think that to ap-
ply P systems to linguistic issues – conversation modeling, for example – has
several advantages, among which we stress the generality and the flexibility
of the model. Even though the model has not been completely developed yet,
it is easy to see that this bio-inspired framework offers good and simple tools
to account for main elements and functioning of conversation, such as the
following: a) CPSs are able to model interaction, cooperation, and evolution,
three vital features in any formal framework that intends to model conversa-
tion; b) they are suitable to model turn-taking, one of the basic mechanisms
to organize conversation; c) they offer simple tools to account for closings
in conversation; d)important elements in conversation, such as contexts, are
easily formalized in CPSs.

One of the most interesting projects for the future is to implement these
systems for generating a real conversation, testing the aspects which remain
to be correctly tuned. P systems are theoretical generative devices quite eas-
ily implementable on a computer, and this is true also for CPSs. Another
interesting development of CPSs may be the formalization of parallelism in
conversation. Such an approach could help, for instance, to model the inter-
action between agents in a realistic way.

5 Applying LPS to Semantics

Motivation. Formalizing semantics is one of the most challenging topics in
linguistics, especially because the systems we have to consider in semantics
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are very interactive and constantly evolving. In this sense, we remember the
sentence of Robert Musil: “No word means the same thing twice.” Beyond
literary references, the fact is that meaning is a continuosly changing concept
in linguistic systems; contexts, speakers, cultures, and even education are de-
terminant factors for establishing the meaning of an utterance. Our proposal
here tries to combine formal aspects with environmental influence and inter-
action between agents. Agents can be individual people or groups of people
with the same background. The idea of explaining meaning as something dy-
namic is not new. It can be found in theories like dynamic semantics [11]
and dynamic interpretation theory (DIT) [4]. While the former is concerned
with sentence meaning, the latter is concerned with utterance meaning. The
main idea of DIT is that the meaning of an utterance in a dialogue should
be defined dynamically, in terms of the changes that the agent intends to
bring about. Here we propose a new dynamic model for the lexical meaning,
based on P systems, and we introduce dynamic meaning P systems (DMPSs)
by combining P systems with several concepts relating language change and
evolution with biological concepts, extracted from Croft [7]. The main ele-
ments in the process of communication are the addresser, the addressee, the
message, and the context. Membranes are a good model for approaching ut-
terances from the point of view of addresser, addressee, and context, because
they can explain, simulate, and possibly predict how the elements involved in
the communicative process are able to modify the structure or the meaning of
the message, and also how the message can create new contexts or transform
those which already exist. We consider our approach here only a first step
toward a complex game dealing with the simulation of construction and evo-
lution of meaning. For building the “game,” we first give some basic semantic
definitions adapted to DMPSs. Then, we introduce definitions for adapting
linguistic membrane systems to semantic description. We redefine lexical se-
mantic concepts in terms of DMPSs, and finally provide some examples of the
functioning of the DMPS approach to semantic relations.

5.1 A Theoretical Framework for Semantics

Croft points out in [7] that it is possible to give two different definitions of
meaning, based on “the distinction between a language as a population of
utterances produced by a speech community, and a grammar as an individ-
ual speaker’s knowledge about the conventions of the speech community.” The
definitions are as follows:

• The community’s meaning of a linguistic form (a lingueme) is the lin-
eage of replication of its use, in its full encyclopedic, contextual value.

• The individual’s meaning of a lingueme is a mental structure that
emerges from the individual’s exposure to (necessarily partial) lineages
of the community’s meaning, including, of course, the use of the lingueme
by the individual.
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In order to adapt semantic definitions to DMPSs we take the notion of
lingueme referred to in the above definitions. A lingueme is a linguistic unit,
an utterance, no matter whether it is a word, a sentence, or a discourse. A
lingueme, in the first state, has no meaning. From a lingueme we infer another
concept, the semanteme, which is a semantic unit. The process of meaning
assignment is given by the application of a semanteme to a lingueme. Such an
application is called a convention. The alphabet of linguemes will be denoted
below by V = {a, . . . , z}, and that of semantemes by Σ = {α, . . . , ω}.

5.2 From LPS to DMPS

We will modify now some definitions of linguistic P systems – introduced in
Section 2 – in order to obtain a DMPS:

1. The semantic domain of a membrane Mn is a subset Dn of Σ which
represents the set of semantemes this membrane accepts at any step of a
computation.

2. The linguistic domain of a membrane Mn is a subset En of V which
represents the set of linguemes this membrane accepts at any step of a
computation.

3. A membrane Mn in a DMPS is defined in each state by means of two
items, its semantic domain Dn and its linguistic domain En.

4. The correspondence between elements of En and Dn associated with a
membrane Mn is established by a mapping hn, which is given by means
of rules, in the following form: hn(D → E) = {a → α, . . . ,m → π}.
Non-injective functions are allowed.

5. The subscript i attached to an element in a membrane Mn means that
there is no transposition rule for the element in hn. When computation
finishes, every lingueme will be converted in the corresponding semanteme,
following the transposition rules, but elements marked with i are not taken
into account; they simply disappear.

6. The semantic domain of the skin membrane is the union of the semantic
domains of all membranes from the system.

Domains associated with membranes can evolve (if they do, they are called
variable domains) by adding or deleting semantemes or linguemes, through
rules of the forms add {α} to Dn, del {α} from Dn, add {a} to En, and
del {a} from Dn. Here are some rules for handling membranes:

1. If Mm ⊂Mn and Dm = Dn, then δMm.
2. If Mm ⊂Mn and Dm = En, then χMm.
3. If Mm ⊂Mn and En = ∅, then ψMm.
4. If Mm ¯Mn and Dn = Dm, then MnνMm.
5. If Mn ⊂Mm, Dn = Dm, and Vm = Vn, then ηMn.
6. If Mn ⊂Mm and Vm = ∅, then ηMm.
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5.3 Definition of Lexical Semantic Concepts from DMPSs

Semantic relations play an essential role in lexical semantics, the area of se-
mantics devoted to word meaning; they intervene at many levels in natural
language comprehension and production; and they are a central element in the
organization of lexical semantics knowledge bases. Taking into account the rel-
evance of semantic relations, we think that a good way to check the suitability
of DMPSs for semantics is to try to describe some of these semantic relations
by using our model. To this end, we introduce a simple DMPS account for
polysemy, homonymy, synonymy, hyponymy, taxonomy, and meronymy. It is
important to recognize that a language can vary along a number of dimen-
sions: historically, geographically, socially, contextually, and stylistically. The
recognition of these dimensions will be useful when trying to model the above
semantic relations and, of course, for explaining semantic change. We remind
you here that membranes in DMPSs are understood as contexts and that
contexts may be different historical periods, words, persons, social groups,
languages, etc. Before starting with our account of semantic relations, it is
important to mention that for each membrane Mr we use in the following
examples we should specify the semantic domain Dr, the linguistic domain
Er, the function hr, and the skin membrane. For simplicity, we will assume
that in every example the skin membrane represents a natural language.

Meanings and Readings: Homonymy, Polysemy, and Synonymy

According to [18], when we look at words as meaningful units we also have to
deal with the fact that, on the one hand, a single form may be combined with
several meanings and, on the other hand, the same meaning may be combined
with several word forms. Homonymy is directly related to the fact that many
words have more than one meaning and even complete sentences may allow
for several readings. The technical term for this phenomenon is ambiguity. We
say that an expression or an utterance is ambiguous if it can be interpreted
in more than one way. The notion of ambiguity can be applied to all levels
of meaning: to expression meaning, utterance meaning, and communicative
meaning. Here we focus on lexical ambiguity, i.e., the ambiguity of words
at the level of expression meaning. We will distinguish between two forms
of ambiguity: homonymy and polysemy. Polysemy is directly related to the
phenomenon of synonymy, that is, the relation between two (or more) lexemes
with the same sense. We will show that DMPSs offer the necessary instruments
to account for these important lexical semantic relations. This way we provide
evidence of the adequacy of P systems in general, and LPSs in particular, to
approach linguistic issues.

The first two lexical semantic concepts we deal with here are homonymy
and polysemy. The problems posed by these two semantic relations are prob-
ably at the very heart of semantics. If one consults a monolingual dictionary
one will hardly find a word with just one given meaning. If one lexeme has
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strictly only one meaning, then any variation in meaning would result in two
different lexemes. For example, bank as in ‘The Bank of England’ and bank in
‘the river bank’ would be regarded as two different words which just happen
to have the same sound form and spelling. But body, when used to denote the
whole physical structure of a human being or an animal, or just the trunk,
or a corpse, or a group of people working or acting as a unit, would rather
be considered one word with several meanings, because, unlike with bank, the
meanings of body are interrelated. In order to distinguish the two phenom-
ena, the first is called homonymy, and the second is called polysemy. Roughly
speaking, homonymy means lexemes with different meanings that happen to
have the same sound form or spelling. Ideally, homonyms agree in all points
that make up a lexeme, except in meaning. In contrast, polysemy deals with
one lexeme having several interrelated meanings. In general, different mean-
ings are assigned to different lexemes if they have different historical sources.
The idea is that, as long as their meanings remain distinct, different words
do not develop into one, even if their sound forms and/or spellings happen
to coincide for independent reasons. Hinging on the criterion as to whether
or not different meanings are interrelated, the distinction between homonymy
and polysemy is vague. It is best taken as characterizing two extremes on a
scale. Both phenomena constitute lexical ambiguity: the same lexical form has
different lexical meanings. According to [18], what is traditionally described
as homonymy is illustrated by means of examples of bank1 and bank2, the for-
mer meaning ‘financial institution’ and the latter ‘sloping side of a river’. The
traditional definition of homonymy is imprecise. Homonyms are traditionally
defined as different words with the same form. [18] improves the definition by
establishing a notion of absolute homonymy. Absolute homonyms will satisfy
the following three conditions (in addition to the necessary minimal condition
for all kinds of homonymy – an identity of at least one form):

– they will be unrelated in meaning;
– all their forms will be identical;
– the identical forms will be grammatically equivalent.

Absolute homonymy is common enough. Examples as bank1 and bank2, sole1
(‘bottom of foot or shoe’) and sole2 (‘kind of fish’) are instances of this type
of homonymy. But there are also many different kinds of what [18] calls par-
tial homonymy: cases where a) there is an identity of (minimally) one form,
and b) one or two, but not all three, of the above conditions are satisfied.
For example, the verbs ‘find’ and ‘found’ share the form found, but not finds,
finding, founds, founding, etc.; and found as a form of ‘find’ is not grammat-
ically equivalent to found as a form of ‘found’. In this case, as generally in
English, the failure to satisfy (ii) correlates with the failure to satisfy (iii). In
our DMPS approach to homonymy we will define just absolute homonymy,
without providing any definition for what has been called partial homonymy.
While homonymy is a rare and accidental phenomenon, polysemy is abun-
dant. It is rather the rule than the exception. A lexeme constitutes a case of
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polysemy if it has two or more interrelated meanings, or better, meaning vari-
ants. Each of these meaning variants has to be learned separately in order to
be understood. The phenomenon of polysemy is independent of homonymy:
of two homonyms, each can be polysemous. It results from a natural economic
tendency of language. Rather than inventing new expressions for new objects,
activities, experiences, etc. to be denoted, language communities usually opt
for applying existing terms to new objects, terms hitherto used for similar
things. According to [18], while homonymy (whether absolute or partial) is a
relation that holds between two or more distinct lexemes, polysemy (‘multiple
meaning’) is a property of single lexemes. This is how the distinction is tradi-
tionally drawn. But everyone who draws this distinction also recognizes that
the difference between homonymy and polysemy is not always clear-cut in par-
ticular instances. What, then, is the difference in theory between homonymy
and polysemy? The two criteria that are usually invoked in connection with
this are 1) etymology and 2) relatedness of meaning. Homonymous is a word
that is written and pronounced the same way as another, but which has a dif-
ferent meaning. Polysemous is a word that has two or more similar meanings.
Homonymy refers to cases in which two words have the same phonological
form, whereas polysemy refers to the phenomenon that one and the same
word acquires different, though obviously related, meanings often with re-
spect to particular contexts. So, it seems that homonymy and polysemy get
resolved in context. How do we account for those two semantic relations by
using a DMPS? It seems clear that different meanings of a polysemous word
are due to different uses, that is, they are directly related to different contexts
of use. Taking into account this fact, we can easily describe polysemy in a
DMPS by associating each different meaning of a polysemous word with a
different membrane. That is, the first meaning of a polysemous word will be
possible in membrane 1 while the second will be possible in membrane 2; or,
two meanings of the same word, if it is polysemous, cannot be simultaneously
in the same membrane as shown in Figure 6, where all elements are identi-
fied by the notation conventions mentioned at the beginning of this chapter:
D2 = {x}, E2 = {α}, D3 = {w}, and E3 = {α}; the mappings h2 and h3 are
specified in the figure.
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x → α w → α

Fig. 6. Polysemy.

So, if what we have is polysemy, then we have the same lingueme α in two
different membranes (contexts), and in each of them α is related to a different
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semanteme (x or w); if what we have is not polysemy but homonymy, that
is, two different words that share the same phonological form, then we do not
require these two words (linguemes) to be used in different contexts, but they
can be used simultaneously in the same membrane, as shown in Figure 7,
because they are two different linguemes that happen to have the same form.
Note that here we have just one membrane that contains the two linguemes
(with the same form) to which h2 associates different semantemes.
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x → α1 w → α2

Fig. 7. Homonymy.

Figures 6 and 7 may, though in a very simplistic way, account for the
difference between polysemy and homonymy. So, we could say that Figures 6
and 7 offer a definition of those two important semantic relations in terms of
DMPSs.

Let us see some examples of polysemy and homonymy. Consider the noun
light. What we have here is one lingueme, light, that can be related to different
semantemes, such as ‘certain sort of visible radiation’, ‘electric lamps’, ‘traffic
lights’, or ‘illuminated areas’, in different membranes. So, different interrelated
meanings of a polysemous word are found in different membranes/contexts as
shown in Figure 8.
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visible radiation → light

electric lamps → light

Fig. 8. Example of polysemy: light.

A similar DMPS representation can be given for the polysemy of the word
body. This word can be used to denote the ‘whole physical structure of a human
being or an animal’, or just the ‘trunk’, or a ‘corpse’, or a ‘group of people
working or acting as a unit’. Body can be considered as one lingueme that can
be associated with different semantemes in different membranes. Again, the
meanings of body are interrelated, and they get solved in context.
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The above are examples of polysemy. Now, if we turn to homonymy, what
we have are different words that happen to have the same sound form and
spelling. Cases of absolute homonymy are, for example, bank and sole. Bank,
as in the examples

(1) ‘My salary is paid directly in my bank’
(2) ‘Several people were fishing from the river bank’

would be regarded as two different words which just happen to have the same
sound form and spelling. Taking this into consideration, our DMPS’s account
for homonymy will consider in the same membrane two different linguemes
(bank1 and bank2), that happen to have the same form, which are related to
two different semantemes as shown in Figure 9.
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financial institution → bank1

sloping side of a river → bank2

Fig. 9. Example of homonymy: bank.

The same can be said for sole.
Summing up, examples we have provided in this section show, in a DMPS’s

way, the difference between polysemy and homonymy: whereas in the first case
we have the same lingueme associated with different semantemes in different
membranes, in the second case we have different linguemes associated with
different semantemes in the same membrane.

Another important semantic relation is synonymy. Synonymy is defined as
the relation between two (or more) lexemes with the same sense. According to
[17], two lexemes are synonymous if they have the same meaning. Synonymy
in the strict sense, called total synonymy, includes all meaning variants for two
polysemous lexemes and all meaning parts, i.e., descriptive, social, and expres-
sive meanings. Two (or more) expressions are total synonymous, according to
[18], if, and only if, they satisfy the following three conditions:

1. their meanings are all identical;
2. they are synonymous in all contexts;
3. they are semantically equivalent (i.e., their meaning or meanings are iden-

tical) on all dimensions of meaning, descriptive and nondescriptive.

Total synonymy is extremely rare. It is limited mostly to technical terms
and groups of words that differ only in collocational properties, or the like.
More frequently, words that are close in meaning are not fully interchangeable,
but varying in their shades of denotation, connotation, implicature, emphasis
or register, formality, attitude of speaker, region, etc. These are cases of partial
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synonymy: cases in which two lexemes have one meaning variant in common,
or words with the same descriptive meaning but different social or expressive
meanings. Many of the expressions listed as synonymous in ordinary or spe-
cialized dictionaries are what may be called near-synonyms, expressions that
are more or less similar, but not identical, in meaning. Near-synonymy is not
to be confused with various kinds of what is called partial synonymy, which
meets the criterion of identity of meaning, but which, for various reasons,
fails to meet the conditions of what is generally referred to as an absolute
synonymy. Typical examples of near-synonyms in English are ‘mist’ and ‘fog’,
‘stream’ and ‘brook’, and ‘dive’ and ‘plunge’. So, taking into account that usu-
ally what we have are partial synonyms, that is, different words with the same
meaning but belonging to different registers, styles, regions or even historical
periods, it is quite easy to account for synonymy in DMPSs. It is enough to as-
sociate each synonym with a different membrane – understanding membrane
here as register, style, sociolect, region, historical period, etc. – as shown in
Figure 10. Note that ¯, that is, the situation in which the communication be-
tween the two membranes is closed, could account for the nonexistence of total
synonymy: we have the same meaning, but in different contexts (membranes).
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Fig. 10. Synonymy.

We have noted that examples of partial synonyms can be words with the
same descriptive meaning but different social or expressive meaning. If we
take into account expressions which differ in the nature of their expressive
meaning, the most obvious difference is between those which imply approval
or disapproval and those which are neutral with respect to expressivity. Taking
this into account, we can speak of synonyms that have identical meaning but
differ in their connotations, and, in this case, we will associate each element
in a set of synonyms with a different membrane in order to indicate this
difference in the expressivity. Consider, for example, the following four words:
thrifty, mean, stingy, economical. If we look at a standard English dictionary
we will find the following meanings for them:

• thrifty: if you say that someone is thrifty you are praising him for saving
money, not buying unnecessary things, and not wasting things;

• mean: if you describe someone as mean, you are being critical of him
because he are unwilling to spend money or to use very much of a particular
thing;
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• stingy: if you describe someone as stingy you are criticizing him for being
unwilling to spend money (informal);

• economical: someone who is economical spends money sensibly and does
not want to waste it on things that are unnecessary.

From the above definitions, the descriptive meaning of the four words is the
same, so they can be said to be synonyms. However, it follows also from the
definitions that the four words are not interchangeable in all contexts because
they express approval, disapproval, or neutrality. So, the meaning is the same,
but they are appropriate in different contexts, and this is perfectly accounted
for by using our DMPS definition of synonymy. We associate different words
(linguemes) to the same meaning (semantemes) in different membranes, ac-
counting in this way for the identity of meaning (the same semanteme) and
the difference of connotation (different membrane) as shown in Figure 11:
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Fig. 11. Example of synonymy: thrifty, stingy...

If we associate membranes with different dialects, we can say that ‘car’,
‘automobile’, and ‘wheels’ are synonyms, since these lexemes all denote the
same kind of motor vehicle. However, ‘automobile’ is restricted to American
English, whereas ‘wheels’, apart from being variably labelled slang, informal,
or spoken, is also grammatically different from ‘car’ and ‘automobile’: as a
plural-only noun, it cannot be used with the indefinite article a or the numeral
one. In the DMPS approach what we have is similar to Figure 11.

We could go on with examples of synonymy: ‘statesman’ versus ‘politi-
cian’, ‘stink’ versus ‘stench’ versus ‘fragrance’ versus ‘smell’; ‘crafty’ versus
‘cunning’ versus ‘skilful’ versus ‘clever’; and so on. But, at the end, we always
have different words with the same meaning but associated with different
contexts, where context can be understood as styles, dialects, collocational
positions, etc. As can be seen from the above examples, in order to explain
synonymy we need to postulate different membranes – standing for registers,
regions, styles, or whatever can condition the choice of one synonym or an-
other – that contain different linguemes with which the same semanteme is
associated.
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Meaning Relations: Hyponymy, Taxonomy, and Meronymy

By hyponymy we mean a sense relation between one lexeme (the superordinate
term) and two or more terms (the hyponyms) which denote more specific
instances of what the superordinate term denotes. The sense of a hyponym
includes the sense of its superordinate term. According to [17], hyponymy can
be defined as follows: an expression A is a hyponym of an expression B if, and
only if, the meaning of B is part of the meaning of A, and A is a subordinate
of B. In addition to the meaning of B, the meaning of A must contain more
specifications, rendering the meaning of A, the hyponym, more specific than
the meaning of B. If A is a hyponym of B, B is called a hyperonym of A.
In order to provide a DMPS approach to hyponymy, we can use the nesting
relationship between membranes. We recall here that two membranes, M1

and M2, are nested when M1 ⊂M2. It is easy to see that this relation and its
properties can account for hyponymy, that it is an inclusion relationship. We
can take every membrane to be a word, so that by including one membrane
into another we are accounting for the relation between words that are in a
hyponymy relationship. For example, let us assume that membranes 1, 2, and
3 in Figure 12 represent respectively the words “animal,” “dog,” and “terrier”;
by establishing a nesting relation between them (M3 ⊂ M2 ⊂ M1), we are
easily accounting for the hyponymy relation as shown in Figure 12.
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Fig. 12. Hyponymy.

Examples of hyponymy tend to be biological or botanical. Consider the
hyponymic relationship between animal, dog, and terrier, dalmatian, or poo-
dle. We say that animal is the superordinate term that has as hyponym dog,
that in turn has the hyponyms dalmatian, poodle, and terrier. This nesting
relationship is represented as shown in Figure 13.
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Fig. 13. Example of hyponymy: Animal.
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Most lexical items form groups with other lexemes. Semantic theories of
different orientations, in particular structuralism, have tried to capture this
phenomenon by the notion of lexical field. We distinguish two types of lexical
fields, taxonomies and meronymies. Terms for animals, plants, food, or arte-
facts such as furniture, vehicles, clothes, musical instruments, etc. form lexical
fields of considerable size. Their underlying structure is a hierarchy with two
or more levels: a topmost hyperonym like vehicle, a level of general terms such
as car, bicycle, boat, aeroplane, and further levels of more specific types of cars,
bicycles, boats, aeroplanes, etc. Such systems represent a special type of hi-
erarchies, called taxonomies: subordinates in taxonomies (called taxonyms)
are not just arbitrary subordinates but hyponyms that denote subtypes. Ac-
cording to [8], taxonomy may be regarded as a subspecies of hyponymy: the
taxonyms of a lexical item are a subset of its hyponyms. Taking into account
that a taxonomy may be regarded as a subspecies of hyponymy, we use again
the nesting relationship between membranes in order to provide a DMPS ap-
proach of taxonomy. Again, we can take every membrane to be a word, so that
by including one membrane into another we are accounting for the hierarchy
with two or more levels that make up a taxonomy. The second major type of
branching lexical hierarchy is the part-whole type. Many objects in the world
are perceived as a whole consisting of different parts. Correspondingly, our
concepts for complex objects contain these parts as elements. The technical
term for the constituting meaning relation is meronymy; a system based on
meronymies is called a mereological system, or mereology. According to [8],
even though the terms of both types of hierarchy denote classes of entities,
there are some fundamental differences between meronymies and taxonomies:

• The classes denoted by the terms in a taxonomy form a hierarchy which
is more or less isomorphous with the corresponding lexical hierarchy.

• The classes denoted by the elements of a meronymy are not hierarchically
related; that is to say, the hierarchical structuring of a meronymy does not
originate in a hierarchy of classes. It is rather the way the individual parts
of each whole are related which generates the hierarchical structuring that
forms the basis of a meronymy.

• A meronymy thus has closer links with concrete reality than a taxonomy.
The classes denoted by the terms of a meronymy are formed by associating
together analogous parts (e.g., Arthur’s nose, Tom’s nose) of isomorphous
wholes (Arthur’s body, Tom’s body).

• The difference between the two types of hierarchy can be expressed by say-
ing that corresponding to a taxonomic hierarchy is a hierarchy of classes,
whereas corresponding to a part-whole hierarchy is a class of hierarchies.

Although, as we have seen, there are differences between meronymies and
taxonomies, it is perhaps the similarities between them which are the more
striking. Both involve a kind of subdivision, a species of inclusion between
the entity undergoing division and the results of the division, and a type of
exclusion between the results of the division. Any taxonomy can be thought
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of in part-whole terms (although the converse is not true): a class can be
seen as a whole whose parts are its subclasses. Corresponding to each of the
common nouns constituting a typical taxonomy, there exists a proper noun
labelling the class as an individual. The sibling relation among membranes
may account for meronymies in lexical semantics as shown in Figure 14.
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Fig. 14. Meronymy.

Examples of taxonomies are very easy to find. If, for example, we take
musical instruments, we can establish a hierarchy with a topmost hyperonym
musical instrument, a level of general terms, such as strings, woodwind, brass,
percussion, and further levels of more specific kinds of strings, woodwind,
brass, and percussion instruments. The result is a nesting relationship as
shown in Figure 15.
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Fig. 15. Example of taxonomy: Musical instrument.

Another example of taxonomy can be the following: think about the things
(other than food) which go on the table at mealtime that can be labelled with
a hyperonym such as tableware and be divided into a level of general terms
such as cutlery, crockery, glassware, table linen, and further levels of more
specific kinds of cutlery, such as knife and spoon, specific kinds of crockery,
etc. The result is again the nesting relationship, easy to represent in DMPS
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terms. Notice that due to the relationship between hyponymy and taxonomy
the examples provided in this section are valid also as examples of hyponymy.

The division of the human body into parts serves as a prototype for all
part-whole hierarchies. The human body is divided into head, neck, trunk,
legs, and arms; the head is divided into ears and face; the face is made up of
eyes, mouth; the trunk is made up of belly and breast; the arm has hand and
forearm; the hand has finger and palm; and so on. What we have here is a
whole made up of several parts, that in turn are divided into several parts,
etc. As we have said, we can account for this part-whole relationship by using
the sibling relation in DMPS as shown in Figure 16 (we represent just part of
the example).
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Fig. 16. Example of meronymy: Human body.

5.4 Summing up

In this section, we have introduced dynamic meaning P systems, which may
be seen as an integrative approach to semantics coming from formal lan-
guages, biology, and linguistics. These systems try to explain and model the
meaning in a dynamic way, that is, by taking into account that meaning is
something dynamic that can constantly change depending on many different
circumstances (history, geography, context, style, etc.).

In order to define DMPS it is necessary to understand communication
as a process of constant application of linguemes to semantemes, which can
be modified at a given moment for several reasons. We have introduced the
basic definitions of DMPSs, relations between membranes, and different types
of rules. We have also presented a sort of application of this bio-inspired
framework to lexical semantics. In fact we have tried to redefine in terms of
a DMPS six meaning relations: polysemy, homonymy, synonymy, hyponymy,
taxonomy, and meronymy.

In all cases, the relation between membranes in a linguistic P system can
account for lexical semantic relations (hyponymy, taxonomy, and meronymy),
whereas different/the same linguemes associated with different/the same se-
mantemes in different/the same membrane account for semantic relations that
lead to ambiguity (polysemy, homonymy, and synonymy).
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5.5 Possible Extensions

In this section, we have seen how easy it is to account for semantic relations
in terms of a DMPS. Now, if we go back to our initial goals of defining a
dynamic meaning framework, we should suggest how to account for evolution
of meaning in DMPSs.

It is often said that there is less resistance to change in semantics than
in other areas of grammar, so meaning changes relatively quickly and easily.
According to [19], there seem to be different aspects of language in general,
and meaning in particular, which allow semantic change to occur. Two of
these aspects are:

1. Polysemy: words are typically polysemous; they have various meanings or
cover a whole range of shades of meaning. This flexibility is necessary since
words are used in a wide variety of contexts by many different speakers,
who may vary in the meaning they wish to convey. Words can lose or gain
meanings relatively easily due to this elasticity, and they do not have to
lose an earlier meaning to gain a new one.

2. Arbitrariness of the linguistic sign: the sign is bipartite, made up of a
signifier and a signified. These two components are arbitrarily linked. Ar-
bitrariness allows us to regard the signifier and the signified as essentially
independent; either may therefore change with time.

Semantic changes have been classified as follows:

1. Extension (or generalization, or broadening) increases the number of con-
texts in which a word can be used, reducing the amount of information
conveyed about each one.

2. Restriction (or specialization, or narrowing) of meaning also involves an
increase in information conveyed, since a restricted form is applicable to
fewer situations, but tells more about each one.

The above classification refers to the evolution of meaning (signifier), but
note that we have said that according to the arbitrariness of the linguistic sign
the signifier and signified are independent and may also change independently.

Let us consider the above classification of semantic change and the possibil-
ity of affecting the signifier, of a word without affecting the signified and vice
versa. If with this simple idea of semantic change in mind we look at DMPS,
we will quickly individuate a mechanism that allows us to provide a DMPS’s
explanation of the semantic change: variable domains. We have postulated as
one of the features of DMPS the possibility of having variable domains, that
is, semantic and linguistic domains can evolve. The processes for changing
domains in a DMPS may explain semantic change in the following way:

1. The first process we have postulated is the possibility of adding new se-
mantemes to the domain of a membrane. Note that if we add new seman-
temes, they should be related, via a mapping hn, to existing linguemes.
If it is the case that such linguemes, with which we associate the new
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semantemes, already exist in another membrane and are already related
to different semantemes, what we obtain is an extension of meaning. So,
by postulating the addition of semantemes to a membrane domain we ac-
count for the gain in the meaning of a word. This gain in the meaning
may lead to polysemy. Hence, addition of semantemes describes one of the
two types of semantic changes referred to above, extension, that is, the
increase in the number of contexts in which a word can be used.

2. Semantemes can also be deleted from a domain. Note that using this
process we can easily account for loss in the meaning of a word. If a
lingueme is related to different semantemes in different membranes, and
we delete one of these semantemes from one membrane, we are losing one
meaning of this word. So, deletion of semantemes accounts for restriction
of meaning, that is, the restriction of contexts where a lingueme can be
used.

Therefore, by using the process of addition and deletion of semantemes
to/from a membrane domain, we can explain extension and restriction of
meaning. But we have said that signifier and signified can change indepen-
dently. So, we have to account for the evolution of signifier, and we can do
that by using the following two processes for changing membrane domains:

1. New linguemes can be added to a membrane domain. The addition of
new linguemes can account for the introduction of a new signifier that
may then be related to new or already existing meanings (semantemes).
In this case hn associates a new or already existing semanteme to the new
lingueme introduced.

2. Some linguemes can be deleted from the domain. This process accounts
for the elimination of a signifier whose meaning should be absorbed by
another (new or existing) lingueme. Note that in order to describe this
fact we just need that hn associates the semanteme that was associated
with the lost lingueme with another lingueme.

Up to now, we have accounted separately for the change (evolution) of
meaning and for the change (evolution) of signifiers. We can account also for
the total deletion of a word by using subscript i: all elements marked with a
subscript i disappear because there is no transposition rule for such an element
in hn. Thus, every word marked will this subscript will stand for total loss of
a word.

In conclusion, we can account for semantic change by using DMPSs. Ac-
tually, DMPS can account separately for semantic change – understood in
terms of addition/deletion of semantemes from a membrane domain – and for
‘signifier’ change – understood as addition/deletion of linguemes.
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6 Challenges for the Future

In the present work, we have presented a general formalism for dealing with
linguistics by means of P systems. Precedents of this study, which involves
computer science, general linguistics and speech acts theory, are almost nonex-
istent, and our effort has been directed to getting the clearest and widest pos-
sible formalization. As a consequence, many aspects could not be developed
here.

The application of membrane computing to linguistics was carried out
through linguistic P systems (LPSs), theoretical devices specially defined to
deal with the hard features of instability, sensibility to the context, and mutual
influence which characterize languages.

Starting from LPSs, we have suggested (Section 3) several intuitive appli-
cations: semantics, language evolution, sociolinguistics, dialogue, and anaphora
resolution. These are just some of the branches of linguistics capable of being
approached by means of P systems. Among them, only dialogue and seman-
tics have been subjects of our interest in these pages, and, even those, from a
small perspective, due mainly to space restrictions. Therefore, language evo-
lution, sociolinguistics, and anaphora resolution remain to be studied from
LPS points of view. Their formalization is important in order to achieve a
complete characterization of linguistics in this framework, which can provide
the tools for giving a general linguistic theory.

Other important fields of linguistics, such as syntax, have not been consid-
ered since, as an internal and structural part of linguistics, it does not have the
same requirements as the fields we have dealt with here. Linguistic P systems
do not seem to be the best way to analyze syntax, other approximations, such
as P automata, being more useful for explaining how the sentences combine
to make a complex construction.

On the other hand, another possibility is to approach linguistics with reg-
ular P systems. With special rules for membrane evolution, the changes in
societies, the spread of linguistic units and ideas, and the interaction between
agents in the world can be modeled. In this sense, the possibility of predicting
the future evolution of events in real life is a challenging goal which fits the
intrinsic algorithmic nature of P systems. The framework is very general, and
linguistics is only one of the fields that can be studied in terms of membrane
computing (maybe also using fuzzy mathematics, an interesting direction of
research which remains to be explored).
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22. Gh. Păun: Computing with Membranes. Journal of Computer and System Sci-

ences, 61 (2000), 108–143.
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Summary. P automata are membrane systems that work as accepting devices. In

this chapter, two parsing methods using P automata are presented. The first method

uses P automata with active membranes for parsing natural language sentences into

dependency trees. The second method uses a variant of P automata with evolution

and communication rules for parsing Marcus contextual languages.

1 Introduction

P automata are a special type of membrane system that work as accepting
devices. Different classes of P automata have been introduced and studied
recently, starting with [8, 9], where one defines P automata using communi-
cation rules and final configurations. A model of P automata with states was
considered in [26] and extended in [12]. In [12], the results about other previ-
ously defined types of P automata, such as P automata with communication
rules and final configurations, are improved. P automata with priorities were
introduced in [5].

Another model, inspired by natural processes taking place in cells, the
P automaton with membrane channels, was studied in [13, 32]. Paper [13]
also extends the action of P automata on infinite words proceeding in a way
similar to ω-Turing machines. A variant of P automaton using catalysts was
considered in [14], where results on the descriptional complexity of P systems
were obtained. Results on the computational complexity were also presented in
[7]. In [3], a parallel computation model with a flexible structure that evolves
in time according to a set of rules was introduced in the form of a P automaton.
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For a recent complete survey on P automata, the reader is referred to
[6]. For details on different features of P systems, the monograph [34] can be
consulted.

In this chapter, we investigate the possible application of P automata to
parsing.

There are multiple ways in which the analysis of natural languages can
benefit from membrane computing. In general, language analysis does not
mean only syntactic analysis, but also discourse analysis, pragmatic resolution,
and semantic interpretation. Many of these tasks require an exponential time
complexity that can hardly be satisfied by current silicon computers.

The highly parallel framework of membrane computing can very well ac-
commodate these complex tasks of natural language processing. The parallel
computation capacity of P automata is in this chapter the most exploited
feature of membrane systems. Other characteristics of P automata that can
be found useful for designing language systems are (i) the flexibility in writing
the rules, (ii) the computational interplay between the membranes, seen as in-
dependent processors, (iii) the string objects, evolving and traveling through
membranes, and (iv) the communication capacity and the cooperative behav-
ior of membranes.

The chapter is split into two parts. In the first part, we study P automata
with active membranes and their application to parsing natural language sen-
tences into dependency trees. In the second part, we study P automata with
evolution and communication rules and their application to Marcus contextual
languages parsing.

2 Parsing with P Automata with Active Membranes

The first half of this chapter is devoted to P automata with active membranes
and it is based on [3].

2.1 P Automata with Active Membranes

In P automata of the type introduced in [3], the accepting computation starts
with one membrane, which contains the string that has to be recognized and
possibly some other information. The computation develops according to the
input string and, during the evolution, membranes can be created or dis-
solved.

Formally, a P automaton with active membranes (from now on we will
simply say P automaton) is a construct M = (Σ,O, T, µ,M1, . . . ,Mn, R),
such that:

• Σ is the input alphabet; we also consider a copy of Σ denoted by Σ.
• O is the alphabet of feature objects.
• T is the alphabet of agent objects.
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• µ is a hierarchical structure of n membranes. For the rest of this section,
we suppose that µ describes a linear structure, from the membrane labeled
1 which is always an elementary membrane to the membrane labeled n,
with n ≥ 1, such that the membrane i is included in the membrane i + 1
for any 1 ≤ i ≤ n− 1.

• Mi ⊆ O ∪ T ∪ Σ+ is the content of membrane i, for all 1 ≤ i ≤ n. If i
is not an elementary membrane (equivalent in our case with i > 1), then
Mi ⊆ O ∪ T ∪Σ.

• R is the set of rules applicable to all membranes. These rules can be of the
following types3:

1. aw → a;w |
¬(Σ∪T ) with a ∈ Σ, w ∈ Σ∗. The first symbol a is extracted

from the input string (and copied to a), provided that no other symbol
from Σ ∪ T is present in the membrane.

2. x; b → c with x ∈ Σ ∪ T , b, c ∈ O. A symbol b ∈ O is rewritten as c ∈ O
in the presence of a symbol x from Σ ∪ T . This last symbol is consumed.

3. x; b → δ with x ∈ Σ ∪ T , b ∈ O, where δ indicates the dissolution of
the membrane. A symbol b ∈ O is deleted in the presence of a symbol x
from Σ ∪ T . This last symbol is also deleted and the current membrane
is dissolved. The (other) content of the current membrane (particularly
the input string if it is so the case) will be found after dissolution in the
membrane immediately above.

4. [x; b]i → [ci+j [ci+j−1 . . . [c0]i . . .]i+j−1]i+j with x ∈ Σ∪T , b, c0, c1, . . . , cj ∈
O. j ≥ 1 new membranes are created around the membrane i. In every
new membrane i + k a symbol ci+k is written (1 ≤ k ≤ j), while in the
membrane i the symbol x is deleted and the symbol b is rewritten in cj .

5. w → y;w |
¬(Σ∪T ) with y ∈ T , w ∈ Σ+. A symbol y from T is generated in

the membrane containing the input string if no other symbol from Σ ∪ T
is present in that membrane.

6. [x; b]i → [ci+j [ci+j−1 . . . [y; c0]i . . .]i+j−1]i+j with x ∈ Σ∪T , b, c0, c1, . . . , cj

∈ O, y ∈ T . j ≥ 1 new membranes are created around the membrane i.
In every new membrane i + k a symbol ci+k is written (1 ≤ k ≤ j), while
in the membrane i, x is rewritten as y and b is rewritten as c0.

7. x; b → yout|¬T ; c with x ∈ Σ ∪ T , y ∈ T , b, c ∈ O. A symbol b ∈ O is

rewritten in c ∈ O in the presence of a x ∈ Σ ∪ T . This last symbol is
rewritten to y and sent to the immediately next membrane if no other
symbol from T is present in that membrane.

8. x; b→ yδ with x ∈ Σ ∪ T , y ∈ T , b ∈ O, where δ indicates the dissolution
of the membrane. A symbol b ∈ O is deleted in the presence of a symbol x
from Σ∪T . The symbol x is rewritten as y ∈ T and the current membrane
is dissolved. The (other) content of the current membrane will be found
after dissolution in the membrane immediately above.

3
Since we have both symbol objects and string objects, we will use ‘;’ to separate

objects that occur on the same side of a rule.
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The initial configuration has one membrane containing a string over Σ and
a symbol from O. We consider the language L(A) recognized by a P automaton
A as the set of strings over Σ that lead the system to a configuration where
the input string is consumed and all membranes are dissolved.

We denote by P (i) the family of languages recognized by P automata using
(only) rules of the types from 1 to i, for i ∈ {3, 4, 8}, and by P ′(7) the class of
languages recognized by P automata using rules of the types 1 to 7 (though
the rules of type 3 cannot be applied with a symbol x from T ).

Example 1. We consider a P automaton M defined as above where Σ =
{a, b, c}, O = {Z,A,B}, T = {t}, and the set R contains the rules:

xw → x;w |
¬Σ

with x ∈ Σ, w ∈ Σ+,
a;Z → A,
[a;A]1 → [A[A]1]2,
b;A→ B,
x;B → tout|¬t;B with x ∈ {b, t},
c;B → δ.

Then, L(A) = {anbncn | n ≥ 1} (the triple agreement).

We denote by RE, CS, CF , and REG the families of recursively enumer-
able, context-sensitive, context-free, and regular languages, respectively.

The following results are from [3] and they establish the power of P au-
tomata of the previous type for different combinations of rules.

Theorem 1. P (8) = RE, P ′(7) = CS, P (4) = CF , P (3) = REG.

Proofs of these equalities can be found in [3].
The rules of the P automata are inspired by the transition function of the

go-through automata introduced in [17].

2.2 Bubble Trees

In [22], a hybrid tree structure was proposed for representing some linguis-
tic constructions such as coordination or nominal or verbal nuclei. The tree
structure called bubble tree was introduced by Gladkij in [15].

Formally, a bubble tree is a 4-tuple (X,B, φ, /), where X is the set of basic
nodes, B is the set of bubbles, φ is a map from B to the non-empty subsets
of X (which describes the content of the bubbles), and / is a relation on B
satisfying the following properties:

P1. / is a tree relation.
P2. Any one element subset of X is the content of one and only one terminal

node (a node without dependents).
P3. If α, β ∈ B, then φ(α) ∩ φ(β) = ∅ or φ(α) ⊆ φ(β) or φ(β) ⊆ φ(α).



Parsing with P Automata 393

P4. If φ(α) ⊂ φ(β), then α ≺ β, where ≺ is the transitive closure of /. If
φ(α) ⊂ φ(β), then α≺β or β≺α, where ≺ is the reflexive and transitive
closure of /.

The relation / is called dependency-embedding relation. Two subrelations
of / are considered, the dependency relation /1 defined by α /1 β if α / β and
φ(α) ∩ φ(β) = ∅ and the embedding relation /2 defined by α /2 β if α / β and
α ⊆ β. If /1 = ∅, then the bubble tree is called a constituency tree. If /2 = ∅,
then the bubble tree is called a dependency tree.

Bubble trees have been applied by Kahane to linguistic contructions as
coordination or for improving the definition of projectivity of dependency
trees.

In the next section, we will define P systems with the structure of mem-
branes described by bubble trees. We will use bubble trees to represent the
dynamics of the membrane systems generating dependency trees. Embedding
relations within a bubble tree will represent temporary computational rela-
tions between syntactic items, while dependency relations will characterize
syntactic dependencies.

2.3 Parsing Dependency Trees

In this section, we consider P translators (associated with P automata as
above) that map natural language phrases into syntactic structures like de-
pendency trees. During the evolution of a P translator, the internal structure
of the membrane system takes the form of a bubble tree.

A P translator is a modified P automaton whose membrane structure µ is
characterized by a dependency-embedding relation, exactly as in the structure
of a bubble tree. The rules of types 2, 3, and 8 that rewrite feature objects
and/or dissolve membranes are replaced by rules of types 2′, 3′, and 8′ given
below, in which instead of dissolving the current membrane, we attach it by a
dependency link to the immediately higher membrane or to other membrane
in the system.

2′. (x; b;w)i → (c;w)i /1 (b)j with x ∈ Σ ∪ T , b, c ∈ O, w ∈ Σ∗.
3′. ((x; b;w)i¬z)i+1 → (y;w)i+1 /1 (c)i with x ∈ Σ ∪ T , y, z ∈ T , b, c ∈ O,

w ∈ Σ∗.
8′. ((x; b;w)i¬y)i+1 → (w)i+1 /1 (c)i with x ∈ Σ∪T , y ∈ T , b, c ∈ O, w ∈ Σ∗.

The (other) contents of the current membrane (particularly the input
string if it is so the case) will be found after dissolution in the immediately
higher membrane. The structure of the membrane system is not any more
a list as in the case of a P automaton, but a bubble tree. Also, the accept-
ing configurations are not any more the empty ones as in P automata, but
the membrane systems that consume the input string by producing a tree
dependency structure.

In the following discussion, we present an example of a sentence analyzed
into a dependency tree. Consider the following sentence from Dutch:



394 R. Gramatovici, G. Bel Enguix

Wim Jan Marie zag leren zwemmen.

and the following P translator M = (Σ,O, T, µ,M1, . . . ,Mn, R) with:

Σ = {Wim, Jan, Marie, zag, leren, zwemmen,.},

O =

{

X,

[

N
def

]

,

[

V
V (S,C)

]}

,

T = {Jan, Marie},

and the set R of rules described by

1. aw → a;w |
¬b

with a, b ∈ Σ, w ∈ Σ+,

2. (a;X)1 →

(([

N
def

])

1

X

)

2

with a ∈ {Wim, Jan},

3. Marie;X →

[

N
def

]

,

4. a;

[

N
def

]

→ aout;

[

N
def

]

with a ∈ {Jan, Marie},

5.

(

b;

[

N
def

])

i

→

([

V
V (S,C)

])

i

/1

([

N
def

])

j

with b∈{zag,leren,zwemmen},

6.

((

b;

[

V
V (S,C)

])

i

)

j

→

([

V
V (S,C)

])

j

/
(

b
)

i
with b ∈ {leren,zwemmen},

7. .;

[

V
V (S,C)

]

→

[

V
V (S,C)

]

The analysis of the sentence Wim Jan Marie zag leren zwemmen. is de-
scribed by the following sequence of pictures. Each transformation corresponds
to an evolution step. Note that in some evolution steps several rules are ap-
plied to various membranes.

I

'

&

$

%

Wim Jan Marie zag leren zwemmen.
X

'

&

$

%

II
Jan Marie zag leren zwemmen.
Wim X

Configuration I represents an initial configuration of the membrane sys-
tems. In configuration II, the first item, Wim, is extracted from the input string.
In configuration III, rule 2 is applied and a new embedded membrane of type
N is created. The input string lies in this new membrane. In configuration
IV, the second item, Jan, is extracted from the input string.
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III'

&

$

%

'

&

$

%

Jan Marie zag leren zwemmen.
[

N

def

]

X

IV'

&

$

%

'

&

$

%

Marie zag leren zwemmen.

Jan

[

N

def

]

X

In configuration V, the symbol Jan is sent to the parent membrane of
type X. The presence of Jan in this membrane produces the application of
rule 2 and the creation of a new membrane, which will hold the type N . The
new membrane is created immediately under the parent membrane, as shown
in configuration VI. In parallel, the third item, Marie, is extracted from the
input string.

V '

&

$

%

'

&

$

%

Marie zag leren zwemmen.
[

N

def

]

Jan X

VI '

&

$

%

'

&

$

%

'

&

$

%

zag leren zwemmen.

Marie

[

N

def

]

[

N

def

]

X

In configurations VII and VIII, the symbol Marie travels from the most
deeply embedded membrane to the outer membrane. Also, in parallel, in con-
figuration VIII, zag, the fourth item, is extracted from the input string.

VII '

&

$

%

'

&

$

%

'

&

$

%

zag leren zwemmen.
[

N

def

]

Marie

[

N

def

]

X

VIII '

&

$

%

'

&

$

%

'

&

$

%

leren zwemmen.

zag

[

N

def

]

[

N

def

]

Marie X

In configuration IX, the symbol Marie changes the type of the outer mem-
brane from X to N . In parallel, another rule is applied to the most deeply
embedded membrane: the symbol zag results in the creation of a new mem-
brane of type V to which the original membrane of type N is attached through
a dependency relation. This is the first dependency relation that appears in
our bubble tree and it characterizes the syntactic dependency between the
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first noun and the first verb of the input sentence. In configuration X, the
fifth item, leren, is extracted from the input string.

'

&

$

%

'

&

$

%

'

&

$

%

IX

leren zwemmen.
[

V

V (S, C)

]

[

N

def

]

[

N

def

]

¾

½

»

¼

[

N

def

]

'

&

$

%

'

&

$

%

'

&

$

%

X

zwemmen.

leren

[

V

V (S, C)

]

[

N

def

]

[

N

def

]

¾

½

»

¼

[

N

def

]

In configuration XI, the more complex rule 6 is applied: the symbol leren
travels to the parent membrane, together with the rest of the input string and
results in the detachment of the most embedded membrane and its reattache-
ment through a dependency relation. This dependency relation characterizes
the syntactic dependency between the first and the second verbs of the input
sentence.

XI
[

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHjÂ

Á

¿

À

[

N

def

]

'

&

$

%

'

&

$

%

zwemmen.

leren

[

N

def

]

[

N

def

]

In configuration XII, the symbol leren present in the most deeply embed-
ded membrane results in the creation of a new membrane of type V to which
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the original membrane of type N is attached through a dependency relation.
This dependency relation characterizes the syntactic dependency between the
second noun and the second verb of the input sentence.

XII
[

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

'

&

$

%

zwemmen.
[

V

V (S, C)

]

[

N

def

]

?¾

½

»

¼

[

N

def

]

In configuration XIII, the sixth item, zwemmen, is extracted.

XIII [

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

'

&

$

%

.

zwemmen

[

V

V (S, C)

]

[

N

def

]

?¾

½

»

¼

[

N

def

]

In configuration XIV, rule 6 is again applied: the symbol zwemmen travels
to the parent membrane resulting in the reattachement of the innermost mem-
brane through a dependency relation. The dependency relation characterizes
the dependency between the second and the third verb of the input sentence.
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XIV
[

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

[

V

V (S, C)

]

©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

.

zwemmen

[

N

def

]

XV
[

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

[

V

V (S, C)

]

©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

.

[

V

V (S, C)

]

?¾

½

»

¼

[

N

def

]

In configuration XV, the symbol zwemmen produces the creation of a new
membrane of type V to which the original membrane of type N is attached
through a dependency relation. This dependency relation characterizes the
syntactic dependency between the third noun and the third verb of the input
sentence.
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XVI
[

V

V (S, C)

]

'

&

$

%©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

[

V

V (S, C)

]

©©©©©©¼

HHHHHHj¾

½

»

¼

[

N

def

]

'

&

$

%

[

V

V (S, C)

]

?¾

½

»

¼

[

N

def

]

The final membrane structure, depicted as configuration XVI, represents
the dependency tree corresponding to the input sentence.

The previous example illustrates some benefits of using P automata with
active membranes for parsing dependency trees:

• The parallel application of the rules. Even for this deterministic analysis,
by the parallel application of the rules the time complexity of the parsing
is reduced from O(n2) complexity, which is the obtained by a sequential
automaton, to O(n).

• The tree representation of the intermediate generation phases. Using mem-
brane systems with a bubble tree structure, the result of the parsing is
illustrated not only as a final dependency tree, but as a chain of trees in
which the constituency relations are also represented, with their dynamics
that create the dependency structure.

The analysis performed in the above example is an original parsing of the
classical Dutch cross-dependency linguistic construction.

3 Parsing Contextual Grammars

In the second half of this chapter, we address the problem of parsing lan-
guages generated by Marcus contextual grammars using P automata. For an
introduction to Marcus contextual grammars, the reader is referred to [33].
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Contextual grammars were introduced in [28] as an attempt to transform
in generative devices some procedures developed within the framework of
analytical models (some linguistic motivations of contextual grammars are
given in [29]).

In the first decades, contextual grammars developed as a strong formal-
ism in the field of formal language theory ([33]). More recently, the research
on contextual grammars was focused on emphasizing the ability of the for-
malism to recover its initial motivation: processing natural language. Special
attention was paid to the definition of new classes of contextual grammars,
more relevant from the linguistic point of view, to the introduction of tree-like
structures on the strings generated by contextual grammars, to automata rec-
ognizing contextual languages, and to the ambiguity and syntactic complexity
of contextual grammars.

The most important task in this respect still remains the design of effi-
cient parsers for the analysis of contextual languages. Parsing algorithms are
extensively used in linguistic applications and the primary goal is to have a
very good running time. From a theoretical point of view, this means having
a polynomial (of a reasonable degree) time complexity.

There were several attempts to introduce parsers for contextual languages,
as we will point out, but due to high complexity the problem is far from being
solved yet.

The polynomiality of the membership problem for some classes of contex-
tual grammars was addressed by Ilie in [24] and [25]. In [25], it was proved
that the class of external contextual grammars with context-free selectors is
parsable in polynomial time, while in [24] the same result was proved for a
variety of internal contextual grammars with regular selectors. In the latter
case, each derivation in the grammar has to verify a condition of locality with
respect to the place where the new context is inserted.

The results presented in [24, 25] are proved using the construction of a
nondeterministic Turing machine working in a space logarithmic in the length
of the input word. Further, the polynomiality of the parsers for the two classes
of contextual grammars follows from a well known complexity theorem due
to Savitch that transforms the logarithmic space in polynomial time. The
degree of the polynomial representing the time complexity of the parsers is
not computed in either of the two papers.

Nevertheless, the two classes of contextual grammars approached in [24,
25] are rather weak and potentially inappropriate to describe all linguistic
constructions. For external contextual grammars with context-free selectors,
it is known that they are not able to generate all regular languages. For
local internal contextual grammars with regular selectors, such a result is still
unknown.

A condition similar to the local derivation is used in [16] (as “derivation
that preserves the selectors”) in order to define a parser for a class of internal
contextual grammars with context-free selectors. The parser is proved to be
quadratic in the deterministic case, but no complexity results are given for
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the nondeterministic case. No techniques are presented to deal with the expo-
nential complexity of the nondeterminism. Again it is unknown how powerful
this class of grammars is, or how relevant from a linguistic point of view.

Other papers in which recognizers for different classes of contextual gram-
mars are presented are [18, 27, 31]. In [31], Mraz et al. use restarting automata
for the recognition of languages generated by a type of total contextual gram-
mar with regular selectors. The construction is extended in [18] for a class
of contextual grammars generating dependency trees. In [27], go-through au-
tomata are used to recognize languages generated by shuffled contextual gram-
mars and internal contextual grammars with finite and regular selectors. In
none of these cases, are solutions provided to deal with the nondeterminism.

An interesting approach to contextual language parsing is that developed
by Harbusch in a series of papers ([19, 20, 21]). However, the parser for internal
contextual grammars with context-free selectors reported by Harbusch is not
completely defined and was proved neither correct nor polynomial.

This section presents an approach to contextual language parsing that
essentially uses the idea introduced by Harbusch in the aforementioned papers,
but solves the complexity problem due to the strong parallelism exhibited by
P automata.

3.1 Internal Contextual Grammars with Context-Free Choice

An internal contextual grammar with choice in the modular presentation is a
construct G = (V,A, (L1, c1), . . . , (Ln, cn)), where V is an alphabet, A is a
finite language over V (the set of axioms), while (Li, ci), with Li ⊆ V ∗ (the
selection language) and ci = (ui, vi) ∈ V ∗×V ∗ (the context), for any 1 ≤ i ≤ n
are contextual rules. The derivation relation in a contextual grammar is defined
as:

x⇒ y iff there is a contextual production (Li, (ui, vi))

such that x = x1x2x3 with x2 ∈ Li and y = x1uix2vix3.

If
∗
⇒ is the reflexive and transitive closure of ⇒, then L(G) = {x ∈ V ∗ |

∃w ∈ A,w
∗
⇒ x} denotes the language generated by G.

We say that G has F -choice, for a given family of languages F , if and only
if all its selection languages Si, 1 ≤ i ≤ n, belong to F . For the rest of this
section, we assume that all the selection languages are context-free; thus we
will work with internal contextual grammars with context-free choice.

Any sentence generated by a contextual grammar is obtained by adjoining
a sequence of contexts starting with an axiom. But the sequence of contexts,
also called control sequence, alone does not necessarily characterize the deriva-
tion of the sentence because of the different positions in which the contexts
can be inserted.

A more accurate characterization of the generation of w is given by the
following sequence, which is called the description of the derivation:
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α|x11w1x21t1x31|x12w2x22t2x32| . . . |x1kwkx2ktkx3k = w,

where α ∈ A is an axiom, (wi, ti) are contexts, for any 1 ≤ i ≤ k,
α = x11x21x31, and x1iwix2itix3i = x1(i+1)wi+1x2(i+1)ti+1x3(i+1), for any
1 ≤ i ≤ k.

The selectors that were used at each step can be extracted from the de-
scription of the derivation. The derivation structure of the selectors is not
expressed in the description of the contextual derivation, but normally the
structure of the selectors is not relevant for the contextual mechanism.

Example 2. We consider a simple example of an internal contextual grammar
with choice, but with a rich set of derivations associated with each generated
sentence. Let G = (V,A, (L, c)) be an internal contextual grammar with choice
such that V = {a}, A = {a, aa}, L = {an | n ≥ 0}, and c = (a, a). Then,
L(G) = {an | n ≥ 1}.

It can be proved that the number of derivations of the sentence an is:

n!

2[n/2]
,

where n! = 1 · 2 · . . . · n and [x] is the integer part of x (the largest integer not
larger than x).

3.2 Defining the Parser

Let G = (V,A, (L1, c1), . . . , (Ln, cn)) be an internal contextual grammar with
context-free choice. For any contextual rule (Li, ci) with G′

i = (N ′

i , V, S′

i, P
′

i ), a
context-free grammar generating Li and ci = (ui, vi), we define a context-free
grammar Gi = (Ni, V, Si, Pi) such that:

Ni = N ′

i ∪ {Si, Xi}, where {Si, Xi} ∩N ′

i = ∅,
Pi = P ′

i ∪ {Si → XiuiS
′

iviXi} ∪ {Xi → ε} ∪ {Xi → aXi | a ∈ V }.

Also, for the axioms contained in A, we define a context-free grammar G0 =
(N0, V, S0, {S0 → α | α ∈ A}), with N0 = {S0}.

A dotted string over an alphabet W is a string u.v such that uv ∈W ∗. We
define a marked copy of the alphabet V as V = {a | a ∈ V }.

A P contextual parser of the contextual grammar G is a construct M =
(O,µ,M0,M1 . . . ,Mn, R), such that:

• O = V ∪ V ∪
⋃n

i=1 Ni ∪ {., |, <} is the alphabet of objects.
• µ is the structure of n+1 membranes, as described by Figure 1, i.e., a skin

membrane labeled by 0, which contains n membranes labeled from 1 to n;
• Mi is the content of membrane i, for all 0 ≤ i ≤ n. Mi is a multiset of

string objects over the alphabet O. Although the objects that populate
the membranes have the same form, we identify three kinds of objects:
– “description” (DES) objects. These are strings over the alphabet V ∪

V ∪{|}, which encode descriptions of (partial) derivations of sentences
over V .
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– “context-free production” (CFP) objects. These are strings of the form
X|α, where X ∈

⋃n

0=1 Ni is a nonterminal symbol and α is a string
over the alphabet V ∪

⋃n

0=1 Ni. These strings encode context-free pro-
ductions from the grammars Gi, 0 ≤ i ≤ n.

– “mixed” (MIX) objects. MIX objects can be simple or double. A simple
MIX object has the form α1|α2| . . . |αk, where α1 is a dotted string over
V ∪V , α2 is a dotted string over V ∪{S}∪

⋃n

i=1 Ni, and αi, 3 ≤ i ≤ k,
are strings over V ∪V . A double MIX object has the form r < r′, where
r and r′ are simple MIX objects.

Membrane 0 contains DES objects, CFP objects induced by the grammar
G0, and simple MIX objects. Each membrane i, with 1 ≤ i ≤ n, contains
CFP objects induced by the grammar Gi and MIX objects (both simple
and double). We suppose that all objects are in a sufficient number of
copies so that all possible evolution rules that use these objects can be
applied at any moment.

• R is the set of rules applicable to all membranes. R is defined by the
following types of rules4:

1. s→ sin, where s is a DES object. This rule sends a DES object in all the
inner membranes i, for 1 ≤ i ≤ n, and may occur only in the membrane
0.

2. s; p → r, where s = α1|α2| . . . |αk is a DES object, p = Si|β is a CFP
object, and r = .α1|Si|.β||α2| . . . |αk is a simple MIX object. This rule
combines a DES object with a CFP object into a simple MIX object and
may occur in the membrane i, for any i = 0, n.

3. r → r′, where r = α.aβ|α2| . . . |αkγ and r′ = αa.β|α2| . . . |αkγ, are both
MIX objects of the same type, either simple (γ = ε) or double (γ =< t),
and a ∈ V . This rule passes the dot over a marked symbol in a MIX object
and may occur in any membrane where such objects reside.

4. r → r′, where r=α1.aβ1|Si|α2.aβ2|α3|. . .|αk, and r′=α1a.β1|Si|α2a.β2|α3

a|. . . |αk are simple MIX objects and a ∈ V . This rule passes the dot over
an unmarked symbol in a MIX object corresponding to the contextual rule,
marks the symbol as read, and registers the symbol in the description of
the derivation as a marked symbol. The rule may occur in membrane i,
for any 0 ≤ i ≤ n.

5. r → r′, where r = α1.aβ1|X|α2.aβ2|α3 < t, and r′ = α1a.β1|X|α2a.β2|
α3a < t are double MIX objects, X 6∈ {Si | 1 ≤ 0 ≤ n}, and a ∈
V . This rule passes the dot over an unmarked symbol in a MIX object
corresponding to the context-free rule and registers the symbol in the
description of the derivation as an unmarked symbol. The rule may occur
in membrane i, for any 1 ≤ i ≤ n.

6. r; p→ r′, where r = α1|X|α2.Y β2|α3| . . . |αkγ is either a simple (γ = ε) or
a double (γ =< t) MIX object, p = Y |β is a CFP object, r′ = α1|Y |.β| <
α1|X|α2.Y β2|α3| . . . |αk is a double MIX object, and X,Y ∈

⋃n

i=0 Ni. This

4
As above, we will use ‘;’ to separate objects that occur on the same side of a rule.
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rule combines a MIX object with a CFP object in order to create a new
double MIX object. The rule may occur in membrane i, for any 1 ≤ i ≤ n.

7. r; r′ → r′′, where r = α1|X|α2.Y β2|α3| . . . |αkγ is either a simple (γ = ε)
or a double (γ =< t) MIX object, r′=α′

1|Y |α
′

2.|α
′

3 < α1|X|α2.Y β2|α3|. . .
|αk is a double MIX object, r′′ = α′

1|X|α2Y.β2|α3α
′

3|. . .|αkγ is a MIX
object of the same type with r, and X,Y ∈

⋃n

i=0 Ni. This rule combines
two MIX objects to create a new MIX object in which the dot was moved
over a nonterminal symbol. The rule may occur in membrane i, for any
1 ≤ i ≤ n.

8. r → sout, where r = α1.|Si|α2.|α3| . . . |αk is a parsed simple MIX object
and s = α1|α3| . . . |αk is a DES object. This rule extracts a DES object
from a parsed simple MIX object and sends it in the parent membrane
(or to the environment, in the case of the skin membrane). The rule may
occur in membrane i, for any 1 ≤ i ≤ n.
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Fig. 1. The structure of a P contextual parser.

We describe now the functioning of the P contextual parser. In the pre-
liminary configuration, M contains only CFP objects; more precisely, each
membrane i contains all context-free productions from the grammar Gi in a
sufficient number of copies.

If the membrane system has to recognize the sentence w, then the skin
membrane 0 is populated with a sufficient number of copies of w (DES ob-
jects).

The skin membrane (membrane 0) performs two main activities:

• It tries to discover if a current input sentence is an axiom. For this purpose,
the skin membrane:
– combines a DES object with a CFP object representing an axiom

(rule 2);
– ignores the symbols already marked as processed – or overlined (rule 3);
– tries to match the remaining input symbols (the symbols of the input

sentence that were not marked as processed) with the axiom (rule 4);
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– sends to the environment a DES object characterizing a successful
derivation of the sentence w by the contextual grammar G whenever
the match between the remaining input sentence and the axiom suc-
ceeds (rule 8).

• It sends copies of DES objects representing partial descriptions of deriva-
tions of w to all the inner membranes i, for 1 ≤ i ≤ n.

Each inner membrane i, for 1 ≤ i ≤ n, tries to discover in the remain-
ing input string the context and a potential selector, corresponding to the
contextual rule i. Basically, the set of rules that act in an inner membrane
implements an Earley parser for context-free languages (see [10] for details).
Therefore, rules 3, 4, and 5 implement the scanner, rule 6 implements the
predictor, and rule 7 implements the completer. More specifically, an inner
membrane:

• combines a DES object with a CFP object representing a contextual rule
(rule 2);

• ignores the symbols already marked as processed – or overlined (rule 3);
• tries to match some of the remaining input symbols (the symbols of the

input sentence that were not marked as processed) with the context rep-
resented by the contextual rule (rule 4);

• tries to match the unmarked symbols with the terminal symbols of the
context-free productions that generate the selection language represented
by the contextual rule (rule 5);

• applies the predictor to guess the next context-free production that con-
tributes to the generation of the selector (rule 6);

• applies the completer to a context-free production for the generation of
the selector (rule 7);

• sends to the skin membrane a DES object characterizing the partial de-
scription of a derivation of the sentence w by the contextual grammar G
whenever the parsing of the remaining input sentence identifies a possible
application of the corresponding contextual rule (rule 8).

3.3 An Example

We consider the internal contextual grammar G = (V,A, (L, c)) defined in
Example 2, with V = {a}, A = {a, aa}, L = {an | n ≥ 0}, and c = (a, a). We
construct:

– The context-free grammar G′

1 = (N ′

1, V, S′

1, P
′

1), with N ′

1 = {S′

1}, and
P ′

1 = {S′

1 → ε, S′

1 → aS′

1}.
– The context-free grammar G1 = (N1, V, S1, P1), with N1 = {S1, S

′

1}, and
P1 = {S1 → S′

1aS′

1aS′

1, S
′

1 → ε, S′

1 → aS′

1}.
– The context-free grammar G0 = (N0, V, S0, P0), with N0 = {S0}, and

P0 = {S0 → a, S0 → aa}.



406 R. Gramatovici, G. Bel Enguix

In the next set of figures, we partially illustrate the parsing of the sen-
tence aaa. The figures present the content of the membrane system at some
moments, but, except for the first configuration, we list only the content of
the skin membrane. All the objects are listed only once even if they may be
present in multiple copies.

Figure 2 presents the preliminary configuration of the system, before the
introduction of the input sentence.
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Fig. 2. Preliminary configuration of the P contextual parser.

Figure 3 presents the configuration after the first cycle of computation was
performed. DES objects representing the input sentence were introduced in
the skin membrane and were combined with CFP objects. On the other hand,
copies the DES objects were sent to the inner membrane and as a result of the
computation in the inner membrane some DES objects were expelled back in
the skin membrane.
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Fig. 3. Intermediate configuration of the P contextual parser.

Figure 4 presents the configuration after the second cycle of computation
was performed. This configuration can be interpreted as a “final” configura-
tion, since copies of the DES objects representing the results of the parsing
have been already sent out of the skin membrane. However, there is no final
configuration associated with a P contextual parser, since the computation
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continues until no rule can be applied, but this final moment (if such a mo-
ment ever occurs) is of no importance for the computation.
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Fig. 4. “Final” configuration of the P contextual parser.

The three DES objects that are sent to the environment in Figure 4 rep-
resent the descriptions of all the possible derivations of the sentence aaa by
the internal contextual grammar G.

3.4 Complexity Remarks

We finish this section by making several remarks on the complexity of the P
contextual parser that we have presented.

Since we are not really interested in the structure of the selectors, i.e.,
of the context-free sentences that select the contexts, we may suppose that
all the context-free grammars G′

i are in the Greibach normal form, i.e., they
contain only productions of the form A → aα, with a ∈ V , α ∈ (N ′

i)
∗, and
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possible a production S′

i → ε provided that S′

i does not occur on the right
hand side of any production of Gi.

It is clear that in the general case the multisets of string objects that popu-
late the membranes, starting with the input sentence, must have an exponen-
tial size. But, this is normal in a biological environment, where the reduced
size and the natural generation of chemical items allows for the consideration
of such large numbers5.

Once the above “biological hypotheses” are fulfilled, the computational
complexity of the P contextual parser is very convenient. If we suppose that
the number of copies of the string object containing the input sentence and
of the string objects representing the context-free rules of the grammars im-
plementing the contextual grammars is high enough to allow the application
of any rule, in any membrane, at any moment, then the time complexity of
the P contextual parser is O(n2).

Indeed, we can easily remark that because of the Greibach normal form
in which all the context-free grammars are presented, the number of steps in
which an inner membrane eliminates the DES objects in the skin membrane
containing the positions in which the corresponding contexts were identified
in the current input sentence is O(n), since each of the three devices (the scan-
ner, the predictor, and the completer) is used at most n times for a given DES
object. Since the identification of a new context consumes at least one termi-
nal symbol from the input sentence, a DES object cannot pass through the
inner membranes more than n succesive times. This means that after O(n2)
synchronized applications of the rules, all DES objects describing successful
derivations of the input sentences should be eliminated by the skin membrane
in the environment.
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Summary. The simulation of a P system with current computers is a quite com-

plex task. P systems are intrinsically nondeterministic computational devices and

therefore their computation trees are difficult to store and handle with computers

with one processor (or a bounded number of processors). Nevertheless, there exists

a first generation of simulators which can be successfully used for pedagogical pur-

poses and as assistant tools for researchers. This chapter summarizes some of these

simulators, presenting the state of the art of the available software for simulating

(different variants of) cell-like membrane systems.

1 Introduction

In the few years since membrane computing was initiated [39] as a new branch
of natural computing, a large number of variants have been considered, con-
cerning both the syntax and the semantics of the model.

In many of these variants, P systems are seen as devices of a generative
nature, that is, from a given initial configuration several distinct computa-
tions may be developed (in a nondeterministic manner) and produce different
outputs.

There are other approaches where P systems perform computing tasks. For
example, if a certain number, n, is encoded somehow in the initial configu-
ration and we consider the cardinality of the output multiset as the result of
a successful computation, then we can interpret that to mean that the sys-
tem computes a partial function from natural numbers onto sets of natural
numbers.

Finally, membrane systems can also be used to deal with decision problems.
In this case, special objects yes and no are included in the working alphabet,
and thus the system is able to produce a boolean output (accepting or rejecting
the input) in a confluent manner.
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In all these approaches, we get the output of the computation from a final
configuration, looking at the contents of the output membrane or, in the case
of the external output, considering the objects that have been sent out of the
system during the computation.

Unfortunately, for a machine-oriented model of computation as a P system
is, it is usually a complex task to predict or to guess how a P system will behave
when we are designing a cellular solution to a problem. Moreover, as there
do not exist, up to now, implementations in laboratories (neither in vitro or
in vivo nor in any electronical medium), it seems natural to look for software
tools that can be used as assistants that are able to simulate computations of
P systems.

This is the initial motivation for programming simulators. It is clear that
such software tools are very useful when trying to understand how a cellular
system works (both for pedagogical purposes and as an assistant tool for
researchers). Another important point is that the formal verifications of the
cellular solutions designed in this framework are specially hard, and having
a simulator at hand allows us to quickly and easily get information about
the evolution of P systems that can be used as starting point for a formal
verification, maybe suggesting invariants that can be useful for the proofs.
Finally, several of the existing P systems simulators were essentially used in
the bio-applications of membrane computing (examples can be seen also in
the first few chapters of this book).

The chapter is organized as follows. In the next section, some general con-
siderations about the processes of the design and development of simulators
of P systems are given. Section 3 is devoted to the simulators that work with
transition P systems and run on sequential machines. Section 4 deals with
parallel and distributed simulators (also simulating transition P systems) and
Section 5 presents simulators for P systems with active membranes, including
a session of one of them. The chapter ends with a section devoted to other
software and some conclusions.

2 Preliminaries

The simulation of P systems with current computers is quite a complex task,
but there have been several attempts in this direction in the last few years.
We shall try to summarize some of them, presenting the state of the art of
the available software for simulating (different variants of) cell-like membrane
systems.

Generically speaking, the design and development processes for a P system
simulator can be structured as follows:

2.1 Formal Definition of the Model

First of all, one has to choose which variant of membrane systems is going
to be simulated, stating precisely the syntax and semantics of the model to
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avoid ambiguous interpretations. From a technical point of view, these mod-
els can be classified into two categories: the models of P systems where the
number of membranes is bounded by the number of membranes in the ini-
tial configuration (i.e., this number does not change during the computation
or decrease with the dissolution of membranes) and the models where the
number of membranes can increase during the computation, via membrane
creation or division.

The basic variant introduced in [39] is known as transition P systems. The
rules in this model are of the form u→ v, where u is a string over the alphabet
V and v = v′ or v = v′δ, where v′ is a string over

(V × {here, out} ∪ {V × {inj | 1 ≤ j ≤ n})

and δ is a special symbol not in V . Besides, priority relations are considered
among rules. These rules are applied in a maximally parallel way, that is, all
objects which can evolve in one step must evolve (keeping in mind the priority
restrictions).

This basic variant can be modified in many ways, for example, by re-
stricting the model to non-cooperative rules or not allowing priority relations
among rules, considering strings instead of multisets, or even substituting the
classical tree-like membrane structure with tissue-like arrangements.

A specially relevant variant, namely, P systems with active membranes
[41], is obtained by including rules for membrane division. Let us recall that
the rules in this model are of the form

(a) [x → y]αh , for h ∈ H, α ∈ {+,−, 0}, x ∈ V , y ∈ V ∗ (Object evolution
rule). This is an internal rule, associated with a membrane labeled h and
depending on the polarity α of that membrane, but not directly involving
the membrane.

(b) x[ ]α1

h → [y]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V (Send-in communi-
cation rule). An object from the region immediately outside a membrane
labeled h is introduced in this membrane, is possibly transformed into
another object, and, simultaneously, the polarity of the membrane can be
changed.

(c) [x]α1

h → [ ]α2

h y, for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V (Send-out commu-
nication rule). An object is sent out from a membrane labeled h to the
region immediately outside, is possibly transformed into another object,
and, simultaneously, the polarity of the membrane can be changed.

(d) [x]αh → y, for h ∈ H, α ∈ {+,−, 0}, x, y ∈ V (Dissolution rule). A
membrane labeled h is dissolved in reaction with an object. The skin is
never dissolved.

(e) [x]α1

h → [y]α2

h [z]α3

h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, x, y, z ∈ V (Division
rule). An elementary membrane can be divided into two membranes with
the same label but possibly different polarities. The skin cannot divide.
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Note that this variant of P systems uses 2-division but no cooperation or
priorities. The rules are applied according to the following principles (informal
semantics of P systems with active membranes):

• The rules are used as usual in the framework of membrane computing; that
is, in a maximally parallel way. In one step, each object in a membrane
can be used only by one rule (nondeterministically chosen in case there
are several possibilities), but any object which can evolve by a rule of any
type should evolve.

• If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external membrane (more precisely, of
the closest predecessor which is not dissolved).

• All elements which are not specified in any of the operations to apply
remain unchanged.

• A division rule can be applied to a membrane and, at the same time, some
evolution rules can be applied to some objects inside that membrane. In
this case, we can suppose that “first” the evolution rules are used, changing
the objects, and “after that” the division takes place, introducing copies
of the results of the evolutions in the two newly generated membranes
(keeping in mind that all these processes take place in the same step of
computation).

• The rules associated with label i are used for all membranes with this
label. At one step, different rules can be applied to different membranes
with the same label, but one membrane can be the subject of at most one
rule of types (b) to (e).

These two models (transition and with active membranes) are widely con-
sidered in the existing simulators.

2.2 The Choice of a Programming Language

Each programming language has its own advantages and disadvantages and,
up to now, there is no objective criterion to decide which is the most suitable
one for simulating the evolution of a membrane system. Indeed, a large number
of different languages such as Haskell, Prolog, Java, C, LISP, Visual C++,
CLIPS or Scheme have been chosen by authors in the literature. The language
chosen has to be able to carry out the evolution of the P system and to interact
with the user in a friendly way.

It is also possible to design the interface separately from the engine that
performs the evolution, using two different programming languages that are
able to communicate with each other. For example, declarative languages can
be appropriated for programming the inference engine, because an evolution
step of a P system is nearer to a production system based upon rules than to
a list of instructions to be executed in a sequential way.
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2.3 A Good Way to Represent the Knowledge

The choice of a suitable data structure is a key problem in all fields of Com-
puter Science (in particular, when dealing with the simulation of P systems).
This decision is of course related to the programming language used, as spe-
cific techniques related to it have to be applied. A good representation allows
a quick transition between configurations, and therefore speeds up the simu-
lation.

There are also some designs that use two different knowledge representa-
tions, one for communicating with the user, whose goal is to implement an
easy way to input the data describing the P system and to present the output
in a natural way, so that the simulator can provide a better understanding
of the evolution of a P system even to users who are not familiar with the
programming language, and another for handling configurations and rules in
order to perform the evolution steps (an efficient internal representation of P
systems).

If two different representations are used, it becomes very useful to have at
our disposal a parser (able to analyze syntactically the input introduced by
the user) and a compiler (that translates the analyzed input into the internal
grammar). Note that in some cases the internal representation is the same
grammar used to input the data, so no compiler is needed.

2.4 Design of an Inference Engine to Carry out the Computation

There exists a basic difficulty intrinsic to the simulation of a P system in
a conventional computer: the main power of P systems, concerning the exe-
cution of computations, is their massive parallelism. Furthermore, there are
two levels of parallelism: all objects inside a membrane can be transformed
simultaneously, and this process occurs in all membranes at the same time.
Therefore, in one time unit (cellular step), many atomic transformations can
be carried out. However, sequential conventional computers have only one
processor. This means that, regardless of the programming language and the
design chosen for the simulator, only one atomic transformation can be per-
formed in each time unit (processor step).

The second feature which makes hard the design of a simulator is the
intrinsic nondeterminism of P systems. If there is a large number of branches
in the computation tree, the storage of the information can exceed the capacity
of the computer and therefore, from a practical point of view, the simulation
in this case is not feasible.

Keeping in mind these two difficulties, that is, since current computers are
not able to deal with all the information related to the maximal parallelism
and the nondeterminism of (relatively large) P systems, different authors have
imposed several restrictions on their simulators. These constraints can be to
bound the number of membranes or the cardinality of the multisets, to develop



416 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

the computation tree until a prefixed depth, or to follow only one branch in
the computation tree.

Usually, in the first generation of simulators, the codes are balanced be-
tween efficiency and explicitness in the following sense: the purpose of design-
ing a simulator is to get information about the evolution of the system that is
simulated and, therefore, we are interested in a software able to describe the
intermediate steps and configurations. In many cases, authors have preferred
to write the first versions of their simulators in code where clarity is enforced
over efficiency, leaving the latter for further versions.

In spite of these limitations, the success of the first generation of simu-
lators of P systems is beyond doubt. They are useful tools for teachers and
researchers. On the one hand, one of the main utilities of this software is its
use for a better understanding of membrane computing, so it is a pedagogical
tool of first choice. On the other hand, it has proved to be a useful assis-
tant tool for the design and verification of complex P systems which solve
problems, relieving researchers of calculations by hand.

3 Simulators of Transition P Systems

The first simulators appeared in 2000, less than two years after Păun’s founda-
tional paper [39] was presented. All of them were focused on the basic model of
transition P systems, and they pointed out one feature that has been followed
by newer simulators: the balance between understandability and efficiency.

3.1 Maliţa’s Simulator (2000)

In the Workshop on Multiset Processing which was held in Curtea de Argeş,
Romania, in 2000, Mihaela Maliţa presented one of the first simulators for
membrane systems [30]. It is a program written in LPA-Prolog for simulating
transition P systems.

A configuration is represented as a list of labeled nested lists where objects
are represented together with their multiplicities. There are also flags x or y,
to distinguish between objects that can and cannot be processed.

The rules are represented by expressions explicitly mentioning four fields:
the membrane (region) where the rule can be applied, the ordinal of the rule
in its membrane, the initial multiset, and a multiset of products with target
indicators (here, in(j), or out) or, eventually, with the flag dissolve.

This simulator applies a restricted parallelism in the following sense: in
each step, for each membrane, the simulator selects only one rule, and then
this rule is applied as many times as possible.

In this simulator Maliţa pointed out one of the general ideas of the first
generation of simulators: the transparency of the code in order to follow the
features of membrane computing paradigm. She did not try to make pro-
gramming shortcuts or tricks that might have given an optimal program. Her
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intention was to write a program so transparent that anyone who knows Pro-
log could understand how a P system works, and any person having some
familiarity with membrane systems could read and understand the Prolog
code of the simulator.

The simulator behaves as follows. It receives as input the configuration of
a system together with a set of rules, and a parameter specifying the desired
number of evolution steps. The output of the simulator shows the configura-
tions of one branch of the computation tree until reaching the desired number
of evolutions.

3.2 Suzuki and Tanaka’s Simulator (2000)

In the same year, Yasuhiro Suzuki and Hiroshi Tanaka presented in [50] a
program written in LISP for simulating transition P systems without mem-
brane division and, therefore, with the number of membranes and complexity
of membrane structure limited by the initial configuration, since membranes
can only be dissolved.

They consider a class of P systems, which they call Artificial Cell Systems
(ACSs), consisting of a membrane structure, multisets of symbols placed in
its regions, and a set of rewriting rules acting in all the regions.

As we pointed out above, different authors have imposed some constraints
to the design of their simulators. The specific feature from this one is to bound
the size of each multiset.

This simulator has been successfully used to simulate realistic situations,
such as the Brusselator model (the model of a chemical oscillation related to
the Belousov-Zabotinski reaction), and in modeling and analyzing ecological
systems (see [51] for more examples of applications).

3.3 Natural Computing Group from Madrid (2002)

In several papers (see [5, 6, 9, 11, 10]) some members of the Natural Computing
Group of the Technical University of Madrid [54] proposed frameworks and
data structures suitable for P systems, but in an abstract rather than practical
context.

In [7], based on previous theoretical formalizations, they present a sim-
ulator for transition P systems written in Haskell. They consider two layers
in a P system: on the one hand, there is a static structure, composed of the
membranes and objects of the system; on the other hand, there is a dynamic
structure, which refers to the set of rules of the system.

They present several specific modules (Abstract Data Types) to transfer to
the software the concepts of multiset, rule, region, membrane, etc.

The Haskell interpreter chosen has been Hugs98 for Microsoft Windows1.
The source code can be downloaded from the P system Web page [55].

1
The interpreter for several operating systems can be downloaded from

http://cvs.haskell.org/Hugs/pages/downloading.htm.
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The simulator behaves as follows. It receives as input a file encoding a
system (configuration and rules in each region) and produces another file
encoding a system (configuration and rules in each region), obtained by the
application of one step of the computation (via a maximal multiset of rules
randomly selected).

3.4 Balbont́ın et al. Simulator (2002)

Two years after the Workshop on Multiset Processing, also in Curtea de Argeş,
D. Balbont́ın-Noval, M.J. Pérez-Jiménez, and F. Sancho-Caparrini presented
during the Workshop on Membrane Computing 2002 a simulator [12] for tran-
sition P systems written in MzScheme. A library of procedures was developed
for working in two stages:

(1) first a parser analyzes the input and checks if it is syntactically correct,
and if so, a compiler rewrites the input introduced by the user into an
internal grammar;

(2) then, the simulation is carried out up to a prefixed level (number of evo-
lution steps) in all branches of the computation tree.

The simulator behaves as follows. It receives as input the initial configu-
ration of a system including the set of rules and a parameter specifying the
desired number of evolution steps, and it outputs the computation tree of the
P system, step by step, until reaching the desired number of evolutions.

The inference engine that actually implements the evolution steps follows
the formalization from [47]. That is, first of all it checks which are the applica-
ble rules, according to the priority relations; then it calculates the applicability
vectors for each membrane (that is, the multisets of applicable rules satisfy-
ing the maximal parallelism condition); and finally it combines such vectors
(one vector for each region) to get the applicability matrices for the system.
The simulator uses this procedure to follow all the possible nondeterministic
choices of the computation. The expansion of the computation tree is made
in a progressive way, level by level (breadth expansion), to a prefixed depth.

3.5 Ardelean and Cavaliere’s Simulator (2003)

A very interesting tool for modeling biological processes was presented in [4].
It can be thought as a transition P system simulator because the number
of membranes does not change during the computation. More precisely, the
software deals with a special variant of P systems: the allowed rules are both
rewriting and symport/antiport rules. This variant of P systems has been
proposed in [18] and its motivations are rooted in the idea to separate the
evolutive mechanism of the cell from the communicative mechanism.

The authors try to bridge the mathematical model and biological reality,
indicating how one can use the P system framework to model very important
processes that happen in cells.
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The simulator takes as input the rules of a system, its membrane structure
(which can be any graph, not only a tree) and the multisets of objects asso-
ciated with the regions. The software assigns to each rule two kinds of prob-
abilities: probability of being available and probability of winning a conflict.
The simulation takes place in the following way: at each step, the simulator
decides which are the available rules in that step, and this decision is taken
using the above mentioned probability. Then, the available rules are applied
in the maximally parallel mode by using the weak priority approach. This can
be seen as a competition of the rules for each single occurrence of the objects.

Several biological processes have been simulated illustrating the usefulness
of this software (see [19] and Chapter 4 of the present book).

3.6 Nepomuceno’s Simulator (2004)

In [37], we can find a software application, SimCM , written in Java. This tool
is a friendly application which allows us to follow the evolution of a transition
P system in a visual way. Essentially, we handle transition P systems by
means of three basic operations: Create an initial membrane system (the
simulator includes a debug mode in order to avoid user errors); Load and
Save previously defined membrane systems; and Carry out a simulation of
the P system evolution. This simulation can be made in three different ways:
showing the computation tree to a given maximal depth, level by level, or
guided.
The main screen is divided into four basic panels:

• Computation tree: this panel shows the tree of configurations after the
simulation is finished or during its development.

• Current cell: initially, this panel contains a sketch in tree form of the
membrane system to be studied (the program represents the membrane
structures of P systems as trees). Once the simulation is finished or when
it is in development, this panel will represent the state of the membrane
system according to the configuration chosen by the user in the computa-
tion tree panel. In order to select a configuration, it suffices to simply click
on the chosen node in the computation tree panel.

• Rules: in this panel the rules associated with each membrane are listed.
• Applicable rules: this panel shows the applicability multiset associated

with the configuration selected by the user in the computation tree.

The simulator can be downloaded from the Web page of the Research Group
on Natural Computing at the University of Seville [57].

4 Parallel and Distributed Simulators

As we already said in Section 2, one of the main difficulties in the simula-
tion of P systems in current computers is that the computational power of
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these devices lies in their intrinsic massive parallelism. Several authors have
implemented the first versions of simulators based on parallel and distributed
architectures, which is close to the membrane computing paradigm.

4.1 Ciobanu and Wenyuan’s Simulator (2003)

G. Ciobanu and G. Wenyuan presented in [24] a parallel implementation of
transition P systems2. The implementation was designed for a cluster of com-
puters. It is written in C++ and makes use of Message Passing Interface
(MPI) as its communication mechanism. MPI is a standard library developed
for writing portable message passing applications, and it is implemented both
on shared memory and on distributed memory parallel computers.

The program was implemented and tested on a Linux cluster at the Na-
tional University of Singapore. The cluster consisted of 64 dual processor
nodes. The implementation is object-oriented and involves three components:

• class Membrane, which describes the attributes and behavior of a mem-
brane,

• class Rule, which stores information about a particular rule, and
• Main method, which acts as central controller.

The rules are implemented as threads. At the initialization phase, one
thread is created for each rule. Rule applications are performed in terms of
rounds. To synchronize each thread (rule) within the system, two barriers
implemented as mutexes3 are associated with the thread. At the beginning
of each round, the barrier that the rule thread is waiting for is released by
the primary controlling thread. After the rule application is done, the thread
waits for the second barrier, and the primary thread locks the first barrier.

Since each rule is modeled as a separate thread, it should have the ability
to decide its own applicability in a particular round. Generally speaking, a rule
can run when no other rule with higher priority is running, and the resources
required are available. When more than one rule can be applied in the same
conditions, the simulator randomly picks one among the candidates.

With respect to synchronization and communication, the main communi-
cation for each membrane is done by sending and receiving messages to and
from its parent and children at the end of every round. With respect to ter-
mination, when the system is no longer active there is no rule applicable in
any membrane. When this happens, the designated output membrane prints
out the result and the whole system halts.

In order to detect if the P system halts, each membrane must inform the
other membranes about its inactivity. It can do so by sending messages to
other membranes (these membranes can be normal or inactive) and by using
a termination detection algorithm (see [8]).

2
A preliminary version of this paper can be found in [23].

3
A mutex object is a synchronization object whose state is set to signaled when it

is not owned by any thread, and non-signaled when it is owned.
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4.2 Syropoulos et al. Simulator (2003)

Syropoulos, Mamatas, Allilomes, and Sotiriades presented in [52] a purely
distributive simulation of P systems. It is implemented using Java’s Remote
Methods Invocation to connect a number of computers that interchange data.
As the authors pointed out, the idea of designing a distributed simulator for
a network of computers, instead of doing so for a cluster architecture, avoids
the problem of limited hardware compatibility. The class of P systems that
the simulator can accept is a subset of the NOP2(coo, tar) family of systems,
which have the computational power of Turing machines. This variant restricts
the number of membranes to two, allows cooperation, and the symbol tar
indicates that the communication rules use target indicators of the type inj .

Initially, a copy of the simulator is installed on a number of different com-
puters. Randomly, we choose a computer and assign to it the role of the
external compartment, while the others play the role of the internal com-
partments. Upon starting, a Membrane object is ready to participate in the
network on each computer. Threads are an essential aspect of the implemen-
tation. In particular, each membrane class runs in its own thread, which, in
turn, operates on a different machine. When the system starts, the computer
that plays the role of the external compartment reads the specification of a P
system from an external file and stores the data.

An artificial parameter is introduced in order to prevent the system from
going into an infinite loop. When the simulator has successfully parsed the P
system’s specification, the main computer decides whether there are enough
resources or not. If the available resources match the requirements set by
the description of the P system, then the simulator starts the computation.
Otherwise, it aborts the execution. In order to be able to make this decision,
the simulator has been designed in such a way that all membrane objects
send multicast UDP packets to a well known multicast address. Each packet
contains the IP address of each sender, and multicast packets are received by
all objects participating in the network. Thus, each computer knows which
computers are alive at any time. In this way, the main computer has all the
necessary information to decide whether there are sufficient resources to start
the computation. A universal clock is owned by the object that has the role of
the external compartment. This object signals each clock tick by the time the
previous macrostep is completed (i.e., when, for a given macrostep, all remote
objects have finished their computation).

The source code of the system, a jar file, which can be used to install the
simulator, as well as the documentation of the simulator, can be downloaded
from [53].

5 Simulators of P Systems with Active Membranes

The third group of software tools are devoted to simulating P systems with
active membranes. Polynomial time solutions to NP-complete problems via P
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systems can be reached by trading time with space. This is done by producing
(via membrane division) an exponential number of membranes that can work
in parallel.

The simulation of these P systems has to deal with the potential growth
of the membrane structure and adapt dynamically the topology of the config-
urations depending on whether some membranes are added or deleted. Due
to the obvious limitations of computational resources, the P systems which
can be simulated are of a small size.

5.1 Ciobanu and Paraschiv’s Simulator (2002)

In [21] G. Ciobanu and D. Paraschiv presented a software application which
provides a graphical simulation for two variants of P systems: for the initial
version of catalytic hierarchical cell systems and for P systems with active
membranes (see [40, 41]). Its main functions are:

• interactive definition of a membrane system,
• visualization of a defined membrane system,
• a graphical representation of the computation and final result, and
• save and (re)load of a defined membrane system.

Fig. 1. Main screen of Ciobanu and Paraschiv’s simulator.
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The application was implemented in Microsoft Visual C++ using MFC
classes. For a scalable graphical representation, Microsoft DirectX technology
was used. One of the main features of this technology is that the size of each
component of the graphical representation is adjusted according to the number
of membranes of the system.

The system is presented to the user with a graphical interface where the
main screen is divided into two windows: The left window gives a tree rep-
resentation of the membrane system including objects and membranes. The
right window provides a graphical representation of the membrane system
given by Venn-like diagrams. A menu allows the specification of a membrane
system for adding new objects, membranes, rules, and priorities. By means of
the functions Start, Next, and Stop, the user can observe the system evolution
step by step.

The following two simulators have been developed as assistant tools for the
design and formal verification of cellular solutions to NP-complete problems
via recognizer P systems [45, 49]. In this case, as we work with confluent P
systems, it suffices to follow one branch of the computation tree.

5.2 Pérez and Romero’s Simulator (2004)

In this case ([45]) the simulator, written in CLIPS, deals with P systems with
active membranes. The design is based on representing P systems through the
production systems programming paradigm. Generally speaking, a production
system can be structured into three components:

• Working Memory : A set of “facts” consisting of positive literals defining
what is known to be true about the world.

• Rules: An unordered set of user-defined “if–then” rules of the form:

if P1 ∧ ... ∧ Pm then Action1, ..., Actionn

where the Pis are facts that determine the conditions when the rule is
applicable. Each Action adds or deletes a fact from the Working Memory.

• Inference Engine: Procedure for inferring changes (additions and dele-
tions) to Working Memory.

Configurations are represented as a set of unordered facts using the fol-
lowing template:

(deftemplate membrane (slot number)

(slot father) (multislot children)

(slot evolved) (slot label)

(slot polarity-0) (slot polarity-1)

(slot multiset-0) (slot multiset-1))
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The slots number, father and children are used to represent the membrane
structure. The slots label, polarity-0, polarity-1, multiset-0, and multiset-1 rep-
resent respectively the label, polarity of the membrane (current and next) and
multiset (current and next) associated with each membrane.

The simulator transforms the rules of the P system into CLIPS rules as
follows:

(a) [x→ y]αh

(defrule evolution

?membrane <- (membrane (label h) (polarity-0 α )

(multiset-0 $?b0 , x , $?f0)

(multiset-1 $?b1 , x , $?f1))

=>

(modify ?membrane (multiset-0 $?b0 $?f0)

(multiset-1 $?b1 , y , $?f1)))

(b) x[ ]α1

h → [y]α2

h

(defrule send-in

?child <- (membrane (father ?f) (evolved 0)

(label h) (polarity-0 α1 )

(multiset-1 $?content))

?father <- (membrane (number ?f) (multiset-0 $?b0 , x , $?f0)

(multiset-1 $?b1 , x , $?f1))

=>

(modify ?child (evolved 1) (polarity-1 α2)

(multiset-1 $?content , y ,))

(modify ?father (multiset-0 $?b0 $?f0) (multiset-1 $?b1 $?f1)))

(c) [x]α1

h → [ ]α2

h y

(defrule send-out

?child <- (membrane (father ?f) (evolved 0)

(label h) (polarity-0 α1 )

(multiset-0 $?b0 , x , $?f0)

(multiset-1 $?b1 , x , $?f1))

?father <- (membrane (number ?f) (multiset-1 $?content))

=>

(modify ?child (evolved 1) (polarity-1 α2)

(multiset-0 $?b0 $?f0) (multiset-1 $?b1 $?f1))

(modify ?father (multiset-1 $?content , y ,)))

(d) [x]αh → y

(defrule dissolve

?child <- (membrane (number ?n) (evolved 0)

(father ?f) (children $?ch)

(label h) (polarity-0 α1 )

(multiset-0 $?b0 , x , $?f0)
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(multiset-1 $?b1 , x , $?f1))

?father <- (membrane (number ?f) (children $?ch0 ?n $?ch1)

(multiset-1 $?content))

=>

(retract ?child)

(assert (restructure (father ?f) (children $?ch)))

(modify ?father (children $?ch0 $?ch $?ch1)

(multiset-1 $?content $?b1 , y , $?f1 )))

(e) [x]α1

h → [y]α2

h [z]α3

h

(defrule division

?child <- (membrane (number ?n) (evolved 0)

(father ?f) (label h) (polarity-0 α1 )

(multiset-0 $?b0 , x , $?f0)

(multiset-1 $?b1 , x , $?f1))

?father <- (membrane (number ?f) (children $?ch0 ?n $?ch1)

=>

(retract ?child)

(assert (membrane (number ?*number*) (evolved 1) (father ?f)

(label h) (polarity-1 α2)

(multiset-0 $?b0 $?f0)

(multiset-1 $?b1 , y , $?f1)))

(membrane (number (+ ?*number* 1)) (evolved 1)

(father ?f) (label h) (polarity-1 α2)

(multiset-0 $?b0 $?f0)

(multiset-1 $?b1 , z , $?f1)))

(modify ?father (children $?ch0 ?*number* (+ ?*number* 1 ) $?ch1))

(bind ?*number* (+ ?*number* 2)))

In order to carry out one step of the computation, the simulator performs
first an initialization step where the rules are translated into CLIPS rules and
the application of the rules is then simulated.

The simulator behaves as follows. It receives as input the initial config-
uration of a system and a set of rules, and it simulates only one branch of
the computation tree, and several options are provided to choose the degree
of verbosity of the output: show all the configurations of the evolution, or
show only a concrete step, or run and show only the final answer (external
output) of the system. Besides, the user can also decide if the rules applied
are displayed for each step or not.

This simulator has been proven useful for designing and debugging families
of P systems solving strongly NP-complete problems like BINPACKING and
the Common Algorithmic Decision Problem (CADP). Currently, variants of
this simulator which provide symport-antiport rules, catalysts, and a Java
interface are being developed.
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5.3 Cordón-Franco et al. Simulator (2004)

In [27] and [26], a new simulator written in Prolog was presented. It is pretty
different from Maliţa’s simulator ([30]) in implementation, and it works with
P systems with active membranes [41] instead of with transition P systems.

This simulator has been successfully used as assistant in the design of P
systems with active membranes to solve NP-complete problems, for instance,
SAT, VALIDITY, Subset Sum, Knapsack, and Partition problems (see [25,
26, 27, 28, 46, 49]).

Similarly to other programs, the simulator stores and handles the infor-
mation related to the P system and tries to show the process to the user in
a friendly way. One of the main features of this simulator is that both tasks
(computation and relation with the user) are made in the same language. For
that, one exploits the ability of Prolog to define ad hoc symbols in order to
imitate natural language.

In order to give a formal representation in Prolog of the basic structures
of P systems with active membranes using 2-division, the following represen-
tation is considered. A given membrane structure is expressed by means of a
labeled tree, where:

1. < > is the position to denote the root of the tree and it is associated with
the skin;

2. if < i1, . . . , in > is the position of a membrane h, then < i, i1, . . . , in >
denotes the position of the ith membrane placed inside membrane h.

Let us remember that to give a configuration of a P system with active
membranes consists of making explicit the membrane structure and the con-
tents of all membranes.

In this model each configuration is represented as a set of one-literal
clauses, each of them representing a membrane. Hence, in this representation
each clause shows label, position, polarity, multiset of objects, and current
step of the computation, as well as the P system the membrane belongs to.
In this way, the set of clauses gives information about the contents of the
membranes and the membrane structure (by means of the position of each
one).

More precisely, to denote that in the step t of its evolution the P system P
has a membrane at position [pos] with label h, polarity α, and m as multiset,
we write

P :: h ec α at [pos] with m at time t

Note that we use the user-friendly representation of a Prolog literal instead
of the functional representation.

By means of some new function symbols, the rules are also represented as
literals, in the following way:

(a) [x→ y]αh
P rule x evolves to [y] in h ec α
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(b) x[ ]α1

h → [y]α2

h

P rule x out of h ec α1 sends in y of h ec α2

(c) [x]α1

h → [ ]α2

h y

P rule x inside of h ec α1 sends out y of h ec α2

(d) [x]αh → y

P rule x inside of h ec α dissolves and sends out y

(e) [x]α1

h → [y]α2

h [z]α3

h

P rule x inside of h ec α1 divides into y inside of h ec α2

and z inside of h ec α3

The simulator behaves as follows. The input of the program is the ini-
tial configuration of the system (which is represented as a set of literals with
predicate symbol ::, all of them at time 0) and a set of rules. The Prolog
algorithm to carry out the evolution of a P system works in a natural way, as
explained below. It is worth mentioning that only one branch of the compu-
tation tree is simulated, and therefore the result of the simulation is faithful
only in the cases of confluent membrane systems (that is, systems that on the
same input produce the same output).

• Step 1: Initialization. At the beginning of each computation step, all
the membranes are set to applicable and their objects are split into two
multisets: one usable multiset, containing all the objects of the initial
membrane, and one used multiset which is empty.

• Step 2: Transition. If there exists an applicable membrane satisfying the
condition of a rule, then the rule is applied in the following way:
– (a) step: At this stage, only rules of type (a) are checked. The ob-

ject which triggers the rule is removed from usable and the resulting
multiset by the application of the rule is added to used to prevent the
use of the same object by two different rules at the same step. After
that, the membrane remains applicable, and new evolution rules can be
applied. This stage ends when no more rules of type (a) can be applied.

– Non-(a) step: At this stage, only one rule of the other types (not (a))
can be applied, and Prolog selects one from the existing possibilities
(remember that this simulation works only with confluent P systems).
The action depends on the kind of rule to apply:
· Send out rule: The element which triggers the rule is removed

from the usable multiset and the new one is added to the used

multiset of the parent membrane. The membrane changes to not
applicable mode. If the element is sent out of the skin, it is marked
with the property outside.

· Send in rule: This is the converse of the previous action. The ele-
ment which triggers the rule is removed from usable in the parent
membrane and the new one is added to the used multiset. The
membrane changes to not applicable mode.
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· Dissolution rule: The element which triggers the rule is removed
from usable and the new element obtained, together with the rest
of the elements of the membrane, is added to the used multiset
of the parent membrane. The dissolved membrane is removed, and
the membranes inside it become children of the parent, and their
positions are arranged to be correct.

· Division rule: The element which triggers the rule is removed
from usable and the division creates two new membranes in not
applicable mode. One of them keeps the original position and the
second one gets a position which has not been occupied by any
membrane.

– End: When no more rules can be applied to membranes in applicable
mode, a new configuration (with at time incremented by 1) is stored.
At this time no membrane has applicable or not applicable state. These
modes have validity only during the evolution. At this point, the P
system is ready for a new evolution step.

• Step 3: End of computation. If there are no rules to be applied, then
the evolution finishes (the P system halts).

As we said before, the information provided by the simulator can be helpful
in the processes of designing cellular solutions to some problems. Furthermore,
this simulator has been also used in [29] as a tool to study the descriptive
complexity of P systems. The complexity of a computation of a P system can
be described for example by a table showing the number of times that the
rules of the system are applied at each step. Such tables are known as Sevilla
carpets, and were presented in [22].

The data needed to graphically represent the Sevilla carpet associated with
a P system can be extracted from the output produced when simulating the
system. To illustrate this, we present in Fig. 2 the carpet associated with a
P system solving the Partition problem (the parameters of the instance are
N = 5, w1 = 5, w2 = 4, w3 = 1, w4 = 8, and w5 = 6). For further details we
refer the readers to [29] or [49].

The user can choose from several possible outputs. We illustrate them by
showing a session as an example.

In order to launch the simulator, we open a Prolog interpreter and load
the main file simulator.pl. Suppose that we now want to solve an instance
of the Subset Sum problem. The simulator includes a tool that is able, given
an instance of the problem, to automatically generate the files containing the
set of rules and the initial configuration of a recognizer P system with active
membranes which solves the instance.

?- generate(subs).

% subs_file.pl compiled 0.00 sec, 6,876 bytes

Welcome to the program to generate the used files

for a P system to solve the SUBSET SUM problem
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Fig. 2. Sevilla Carpet of a solution of the Partition problem through P systems

with active membranes.

The Subset Sum problem is the following one: Given a finite

set A of N elements, a weight function w defined over it, and

a constant K determine whether or not there exists a subset of

A such that its weight is exactly k.

Please, introduce the name of the P system:

and one point (.) to end (e.g.: p1.)

Name: p1.

Next, introduce the parameters:

and one point (.) to end (e.g.: 5.)

Value of N = 5.

Value of K = 8.

The set of rules has been successfully generated

and stored in the file rules_subs_p1_5_8.pl

Do you want to load it now? (y./n.): y.

% rules_subs_p1_5_8.pl compiled 0.01 sec, 13,500 bytes

Ok, file loaded.

Next, we are going to build the initial configuration.
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We need the specific INPUT for a concrete instance of

the SUBSET SUM problem

Introduce the list of weigths (e.g. [4,5,2,1].)

List: [5,2,7,9,2].

Please, write the name of the file to store the

initial configuration and one point (.) to finish

File : init_subs_p1_58_52792.

Ok, the initial configuration has been stored in the

file init_subs_p1_58_52792.pl

Do you want to load it now? (y./n.): y.

% init_subs_p1_58_52792.pl compiled 0.00 sec, 1,024 bytes

Ok, file loaded.

Have a nice computation!

The current version of the program includes auxiliary files subs file.pl,
knp file.pl, and part file.pl to deal with the Subset Sum, Knapsack, and
Partition problems, respectively. It is important to note that the generation
process can be skipped if we perform further simulations of the same instances;
it suffices then to load the corresponding files.

The user can select different types of outputs for the simulation. One can
ask for a configuration in a concrete step, or to let the simulator run internally,
getting only information about the number of cellular steps of the computation
and the output of the P system.

?- go(p1).

The P system p1 stops at step 32 and returns NO

One can also ask the simulator to show the configurations step by step
until a given point in the computation. Given a configuration of a P system
p1 at time t, the Prolog instruction that simulates one computation step is
evolve(p1,t).

?- evolve(p1,0).

p1 :: s ec 0 at [] with [z1-1] at_time 1

p1 :: e ec -1 at [1] with [a_-8, q-1, x1-5, x2-2, x3-7, x4-9, x5-2]

at_time 1

p1 :: e ec 1 at [2] with [a_-8, e0-1, x1-5, x2-2, x3-7, x4-9, x5-2]

at_time 1

Used rules in the step 0:

* The rule 1 has been used only once

* The rule 51 has been used only once
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Note that the output displayed includes not only the next configuration
but also information related to the rules used. Besides, the simulator informs
us if any objects have been sent out to the environment.

?- evolve(p1,31).

p1 :: s ec 0 at [] with [# -508] at_time 32

p1 :: e ec -1 at [1] with [a-8, x1-5, x2-2, x3-7, x4-9, x5-2]

at_time 32

p1 :: e ec -1 at [2] with [a-3, x1-2, x2-7, x3-9, x4-2] at_time 32

p1 :: e ec -1 at [3] with [a-6, x1-7, x2-9, x3-2] at_time 32

p1 :: e ec -1 at [4] with [a-1, x1-7, x2-9, x3-2] at_time 32

...
p1 :: e ec 1 at [64] with [a0_-25, a_-8, e5-1] at_time 32

Used rules in the step 31:

* The rule 83 has been used only once

The P-system has sent out d1 at step 29

The P-system has sent out no at step 31

?- evolve(p1,32).

No more evolution!

The P system p1 has already reached a halting configuration

at step 32

Currently, a graphical interface of this simulator is being developed using
the Prolog/XPCE object-oriented library.

6 Other Software

We can also find in the literature other approaches that do not exactly fit in
the previous sections.

For instance, although it is not exactly a simulator, we would like to note
the work that Nicolau Jr., Solana, Fulga, and Nicolau published in Funda-
menta Informaticae in 2002.

In [38], D.V. Nicolau Jr. et al. presented an ANSI C library developed to
facilitate the implementation and simulation of P systems. Using the library
proposed in this paper a user can specify an initial configuration (membrane
structure and its contents) and perform actions on the objects or on the
membranes. In fact, with this library membranes can be altered by dissolve,
divide, and create actions. This library represents an intermediate step toward
a practical implementation of P systems in silico.

The authors describe membrane structures as trees. A membrane is rep-
resented by a node in the tree, and the contents (symbols or strings) of that
membrane are associated with the node by means of some auxiliary data struc-
ture such as an array or a list. The immediate “children” of this membrane are
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also included in the node contents. This is done by using a recursive Abstract
Data Type. From a theoretical point of view, there is no limit on the number
of membranes in a P system, and this represents a problem for simulating
in silico P systems which allow division or creation of membranes. To avoid
memory space violations, this software fixes an upper limit on the number of
children in each membrane.

The information in the data structure also include the name of the mem-
brane (its label), the number of children, and the name of its parent mem-
brane.

Rules are not implemented explicitly as data structures. Instead, the user
is supposed to write a function for each membrane reflecting the program of
that membrane. In this way, the user is given complete flexibility over the
way in which the rules are defined and applied in each membrane, including
priority relations, and so on.

In September 2003, Alexandros Georgiou from University of Sheffield pre-
sented a simulator called SubLP-Studio. It is a software simulator for the Sub
LP-Systems model, a variant of L systems and P systems. It optionally inter-
faces with CPFG, thus producing plant graphics using the turtle interpreter.
It is available from the P systems Web page [55].

The Group for Models of Natural Computing [56] in Verona has developed a
P systems simulator4 based on the implementation of the metabolic algorithm
introduced in [14]. The algorithm is inspired by the Law of Mass Action. This
law states that the driving force of a chemical reaction is directly proportional
to the active masses of all the reactants.

They propose regarding a rule r : A1A2 → B1B2 as a chemical reaction;
then the left objects A and B play the role of reactants while those of the
right are products. Following this chemical interpretation, they propose re-
garding rules as descriptors of the changes in concentration of the reactants
into products.

The simulator which implements these ideas is written in Java and the
input is provided to the simulator as an XML file.

We would also like to note the implementation of catalytic P systems pre-
sented by Binder et al. in [15] and Alhazov’s simulator for maximally parallel
multiset-rewriting systems with promoters/inhibitors [1]. The latter was used
as an engine of the communicative P systems simulator by Vladimir Rogozhin
to check the theorems in [2, 32].

Although it is beyond the scope of the present chapter, we consider Pe-
treska and Teuscher’s implementation [48] interesting. Instead of developing
software, they have presented a hardware-based parallel implementation that
allows us to run a certain class of P systems in a highly efficient manner. The
source code of the implementation and more information are available from
[58].

4
The simulator is described in [13].
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It is also worth mentioning the fact that Holger Hoos from the University
of British Columbia teaches a course on Algorithms for Bioinformatics5 and
one of the assignments for his students is to implement a P system simulator
for a restricted version of transition P systems.

7 Conclusions

In this chapter we have briefly presented some programs from what we con-
sider to be the first generation of P systems simulators. In a few years, more
than a dozen software simulators have been presented. As we pointed out
above, the common purpose of all of them is better understanding of the
computational process of P systems for pedagogical purposes, as assistants
for researchers, and for use (mainly) in biological applications. One of the
most extended features is the balance between efficiency and explicitness of
the code.

We are at the beginning of a new generation of simulators, whose properties
have been already pointed out by some of the simulators mentioned above.

For example, it is necessary that the simulator have a friendly and intuitive
graphical interface. This is not a trivial task, because problems such as division
or dissolution of membranes need dynamical solutions in order to update the
graphical representation of all membranes simultaneously.

Another important point to address is the way in which the P system is
provided to the simulator. Future simulators will need parsers to check the
information provided by the user and store it appropriately. Likewise, the use
of tools is necessary to handle information of P systems when the number of
rules, membranes, or objects in a configuration is large.

It is also desirable that the simulator be able to interact with the user
by providing detailed information about the computation, for example, about
the number of rules used in each step and intermediate configurations or
objects sent to the environment (if any) in order to make statistical studies
of the computations (see, e.g., [19], [29], [31] or [51]). Indeed, biologically
inspired variants of membrane systems are not interested in looking for halting
configurations, but in the evolution process itself.

Then, the simulators have to be tested when approaching new problems
both with computational interest (such as solving new NP-complete prob-
lems) and related to applications in biology. The development of more complex
simulators will also require the use of tools for their verification.

The next generation of simulators may be oriented to solve (at least par-
tially) the problems of storage of information and massive parallelism by using
parallel language programming or by using multiprocessor computers. In this
framework, the emergent generation of simulators based on parallel or dis-
tributed architectures could lead to an efficient simulation of P systems in
silico.
5

http://www.cs.ubc.ca/labs/beta/Courses/CPSC545-03/
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In some sense, the current P systems simulators represent a first step to-
ward an implementation of such cellular models in electronic media. However,
we can note an important limitation: the problem of finding an efficient im-
plementation of P systems with active membranes (i.e., a software able to
simulate computations with a polynomial number of cellular steps in polyno-
mial processor time) is as hard as proving that P=NP.
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47. M.J. Pérez-Jiménez, F. Sancho-Caparrini: A Formalization of Transition P Sys-

tems. Fundamenta Informaticae, 49, 1-3 (2002), 261–272.

48. B. Petreska, C. Teuscher: A Reconfigurable Hardware Membrane System. In

[34], 269–285.
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24. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
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